ROBOTIC AND IOT DEVICES AND SYSTEMS FOR RIVER WATER QUALITY MONITORING AND MANAGEMENT: A SCOPING REVIEW
DOI:
https://doi.org/10.4314/njt.2025.5256Keywords:
River water quality monitoring, Arduino, Raspberry Pi, IoTAbstract
Nowadays there is undoubtedly a need to monitor and manage water quality level. Regardless of geographic location, the problem of water pollution becomes ever more important. A starting point to address such an issue would be a detailed understanding of the water quality level through careful monitoring and smart management strategy. The use of Robotic and internet of thing (IoT) devices proves to be not only convenient in terms of easily available hardware, but also very cost-effective and reliable. This scoping review captures an appropriate adoption of Robotic and IoT systems in river water quality modelling, with the Arduino and Raspberry Pi being the most prominent systems. The most frequently measured water quality indicators include pH, turbidity, conductivity, total dissolved solids, and temperature. This review also emphasizes the usefulness and efficiency of Arduino and Raspberry Pi in such settings. With the advancements of IoT devices, sensors and even artificial intelligence (AI), it could be very possible that in the near future fully autonomous systems might be used to gather precise and accurate water quality data.
References
[1] Kolawole, O. M. Ajayi, K. T. Olayemi A. B. and Okoh A. I. “Assessment of Water Quality in Asa River (Nigeria) and Its Indigenous Clarias gariepinus Fish”, International Journal of Environmental Research and Public Health, 8(11), pp. 4332-4352, 2011. doi: 10.3390/ijerph8114332.
[2] Chinyere, O. Sanusi, Y. and Anafi, F. “Assessment of the physico-chemical quality of Uturu section of Aku river in southeastern Nigeria”, Nigerian Journal of Technology (NIJOTECH), 42(2), pp. 296–303, 2023. doi: 10.4314/njt.v42i2.19.
[3] Obiora-Okeke, O. A. Ojo, O. M. and Olabanji, T. O. “Impacts of land use on the quality of Ala River in Akure Metropolis, Nigeria”, Nigerian Journal of Technology (NIJOTECH), 41(3), pp. 625–631, 2022. doi: 10.4314/njt.v41i3.23.
[4] Liang, B. Han, G. Liu, M. Yang, K. Li, X. and Liu, J. “Distribution, Sources, and Water Quality Assessment of Dissolved Heavy Metals in the Jiulongjiang River Water, Southeast China”, International Journal of Environmental Research and Public Health, 15(12), pp. 2752, pp 1-14, 2018. doi: 10.3390/ijerph15122752.
[5] Georgescu, P.-L. Moldovanu, S. Iticescu, C. Calmuc, M. Calmuc, V. Topa, C. and Moraru, L. “Assessing and forecasting water quality in the Danube River by using neural network approaches”, Science of the Total Environment, 879, 162998, pp 1-14, 2023. doi: 10.1016/j.scitotenv.2023.162998.
[6] Zhou, J. Wang, J. Chen, Y. Li, X. and Xie, Y. “Water Quality Prediction Method Based on Multi-Source Transfer Learning for Water Environmental IoT System”, Sensors, 21(21), pp 1-16, 2021. doi: 10.3390/s21217271.
[7] Panagopoulos, Y. Papadopoulos, A. Poulis, G. Nikiforakis, E. and Dimitriou, E. “Assessment of an Ultrasonic Water Stage Monitoring Sensor Operating in an Urban Stream”, Sensors, 21(14), pp 1- 15, 2021. doi: 10.3390/s21144689.
[8] Roy A. and Kizhakkethottam, J. J. “Real Time Water Quality Monitoring of River Pamba (India) using Internet of Things”, E3S Web of Conferences, 477, 00093, pp 1-11, 2024, doi: 10.1051/e3sconf/202447700093.
[9] Adepoju, T. M. Orimogunje, O. K. Akanni, A. A. and Oluwuyi, D. O. “An android based home automation system with Internet of Things”, Nigerian Journal of Technology (NIJOTECH), 41(6), pp. 1025–1030, 2023. doi: 10.4314/njt.v41i6.13.
[10] Landis, J. R. and Koch, G. G. “An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers”, Biometrics, 33(2), p. 363, 1977/ doi: 10.2307/2529786.
[11] Jan van Eck, N. and Waltman, L. “VOSviewer Manual”. Universiteit Leiden, pp 1-55, 2023. [Online]. Available: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf
[12] Lakshmikantha, V. Hiriyannagowda, A. Manjunath, A. Patted, A. Basavaiah, J. and Anthony, A. A. “IoT based smart water quality monitoring system”, Global Transitions Proceedings, 2(2), pp. 181-186, 2021. doi: 10.1016/j.gltp.2021.08.062.
[13] Marindani, S. E. D. and Jati, D. R. “Design and Development of River Water Quality Monitoring and Salinity Development Properly Realtime Based IoT”, Telecommunications, Computers, and Electricals Engineering Journal (TELECTRICAL), 1(2), pp. 136-149, 2023. doi: 10.26418/telectrical.v1i2.70662.
[14] Chowdury, M. S. U. Emran, T. B. Ghosh, S. Pathak, A. Alam, M. M. Absar, N. Andersson, K. and Hossain, M. S. “IoT Based Real-time River Water Quality Monitoring System”, Procedia Computer Science, 155, pp. 161–168, 2019. doi: 10.1016/j.procs.2019.08.025.
[15] Muniz, R. de F. Almaz Ali Yousif, B. and Shemshad, A. “River Water Quality Monitoring Through IoT Enabled Technologies”, Computational Algorithms and Numerical Dimensions, 1(1), pp. 35-39, 2022. doi: 10.22105/cand.2022.156294.
[16] Fakheri, S. Komazec, N. and Najafi, H. S. “IoT Based River Water Quality Monitoring”, Computational Algorithms and Numerical Dimensions, 2(4), pp. 216–220, 2023. doi: 10.22105/cand.2023.166518.
[17] Dinesh, P. M. Shree Sapna, K. Kiranisha, A. J. Sabeenian, R. S. Paramasivam, M. E. and Manjunathan, A. “IOT Based Real Time River Water Quality Monitoring and Control System”, E3S Web of Conferences, 399, p. 04013, pp 1- 10, 2023, doi: 10.1051/e3sconf/202339904013.
[18] Mat Nuri, N. R. Fahmy Rosley, M. I. Ayob, M. E. Mohamad, S. and Abu Bakar, N. A. “Real-time Water Quality Monitoring System using IoT: Application at Melaka River, Malaysia”, Journal of Advanced Research in Applied Mechanics, 121(1), pp. 66-78, 2024. doi: 10.37934/aram.121.1.6678.
[19] AlMetwally, S. A. H. Hassan, M. K. and Mourad, M. H. “Real Time Internet of Things (IoT) Based Water Quality Management System”, Procedia CIRP, 91, pp. 478–485, 2020, doi: 10.1016/j.procir.2020.03.107.
[20] Pham, T. N. Ho, A. P. H. Nguyen, T. V. Nguyen, H. M. Truong, N. H. Huynh, N. D. Nguyen, T. H. and Dung, L. T. “Development of a Solar-Powered IoT-Based Instrument for Automatic Measurement of Water Clarity”, Sensors, 20(7), pp 1-16, 2020. doi: 10.3390/s20072051.
[21] Saputra, W. T. Prima, E. C. Fajar, M. C. B. Rozi, M. F. Destanto, N. A. Hadjar, A. S. Amadudin, M. N. Y. and Ashidiq, R. M. “IoT-MQTT Protocol-Based Water Sensor System to Monitor Citarum River Water Quality using Arduino Uno R4 Wifi”, Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, 9(1), pp. 11–22, 2025. doi: 10.31961/eltikom.v9i1.1335.
[22] Gisi, M. Navratil, O. Cherqui, F. Cossart, E. Russell, K. L. Fletcher, T. D. Perret, F. Cherif, I. Walcker, N. Bourjaillat, B. Lagouy, M. James, R. B. and Da Silva, P. V. R. M. “Riverturb, an Iot Water Turbidity Monitoring System for River Applications”, SSRN, pp 1- 38, 2025, doi: 10.2139/ssrn.5275838.
[23] Syafrudin, S. Sarminingsih, A. Juliani, H. Budihardjo, M. A. Puspita, A. S. and Auliya Arlin Mirhan S. “Water Quality Monitoring System for Temperature, pH, Turbidity, DO, BOD, and COD Parameters Based on Internet of Things in Garang Watershed”, Ecological Engineering & Environmental Technology, 25(2), pp. 1–16, 2024. doi: 10.12912/27197050/174412.
[24] Ahmed Kabbashi, N. Fuad Hasan, T. Alam, Z. Hassan, A. and Sazaly, M. A. Q. “Application of IoI for monitoring water quality: Sungai Pusu case study”, Chemical and Natural Resources Engineering Journal (Formally Known As Biological and Natural Resources Engineering Journal), 8(2), pp. 1–8, 2024. doi: 10.31436/cnrej.v8i2.106.
[25] Amirgaliyev, B. Kozbakova, A. Omarova, P. Merembayev, T. and Amirzhan, K. “Development and experimental study of an intelligent water quality monitoring system based on the internet of things”, Bulletin of Electrical Engineering and Informatics, 14(1), pp. 761-773, 2025. doi: 10.11591/eei.v14i1.8864.
[26] Khudaybergenov, T. Park, Y. Im, S. Ho, B. J. Yang, S. Kim, J. Lee, S. Cha, D. Y. Woo, D. and Cha, J. “An IoT routing based Local River Field Environment Management solution using Uzbekistan Testbed”, International journal of advanced smart convergence, 9(3), pp. 1-8, 2020. doi: 10.7236/IJASC.2020.9.3.1.
[27] Chandrappa, S. Dharmanna, L. Shyama Srivatsa Bhatta, U. V. Sudeeksha Chiploonkar, M. Suraksha, M. N. and Thrupthi, S. “Design and Development of IoT Device to Measure Quality of Water”, International Journal of Modern Education and Computer Science, 9(4), pp. 50-56, 2017. doi: 10.5815/ijmecs.2017.04.06.
[28] Ryu, J. H. “Prototyping a low-cost open-source autonomous unmanned surface vehicle for real-time water quality monitoring and visualization”, HardwareX, 12, p. e00369, pp 1-11, 2022. doi: 10.1016/j.ohx.2022.e00369.
[29] Ryu, J. H. “UAS-based real-time water quality monitoring, sampling, and visualization platform (UASWQP)”, HardwareX, 11, p. e00277, pp 1-9, 2022. doi: 10.1016/j.ohx.2022.e00277.
[30] Esakki, B. Ganesan, S. Mathiyazhagan, S. Ramasubramanian, K. Gnanasekaran, B. Son, B. Park, S. W. and Choi, J. S. “Design of Amphibious Vehicle for Unmanned Mission in Water Quality Monitoring Using Internet of Things”, Sensors, 18(10), pp 1-23, 2018. doi: 10.3390/s18103318.
[31] Vijayakumar, N. and Ramya, R. “The real time monitoring of water quality in IoT environment”, in 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], Nagercoil, India: IEEE, 2015. pp. 1–4. doi: 10.1109/ICCPCT.2015.7159459.
[32] Huang, L. Li, Z. Li, S. Liu, L. and Shi, Y. “Design and Application of a Free and Lightweight Aquaculture Water Quality Detection Robot”, Journal Européen des Systèmes Automatisés, 53(1), pp. 111-122, 2020. doi: 10.18280/jesa.530114.
[33] Agade, P. and Bean, E. “GatorByte – An Internet of Things-Based Low-Cost, Compact, and Real-Time Water Resource Monitoring Buoy”, HardwareX, 14, p. e00427, pp 1-21, 2023. doi: 10.1016/j.ohx.2023.e00427.
[34] Prabowohendhi, S. Yuamita, F. and Jati Nugroho, A. “Robot Boat Design For Real-Time Monitoring Of River Water Quality”, International Journal of Engineering Technology and Natural Sciences, 2(2), pp. 56-58, 2020. doi: 10.46923/ijets.v2i2.94.
[35] Silva Junior, A. Lima Sa, S. Santos, D. Negreiros, A. Souza Silva, J. Álvarez Jácobo, J. and Garcia Gonçalves, L. “Towards a Real-Time Embedded System for Water Monitoring Installed in a Robotic Sailboat”, Sensors, 16(8), pp 1-19, 2016. doi: 10.3390/s16081226.
[36] Gupta, S. Kohli, M. Kumar, R. and Bandral, S. “IoT Based Underwater Robot for Water Quality Monitoring”, IOP Conference Series: Materials Science and Engineering, 1033(1), pp 1-10, 2021. doi: 10.1088/1757-899X/1033/1/012013.
[37] Lameski, P. Zdravevski, E. Koceski, S. Kulakov, A. and Trajkovik, V. “Suppression of Intensive Care Unit False Alarms based on the Arterial Blood Pressure Signal”, IEEE Access, pp. 1–1, 2017. doi: 10.1109/ACCESS.2017.2690380.
[38] Koceski, S. Koceska, N. Koceva Lazarova, L. Miteva, M. and Zlatanovska, B. “Exploring the performance of ChatGPT for numerical solution of ordinary differential equations”, Journal of Technology and Science Education, 15(1), p. 18, 2025. doi: 10.3926/jotse.2709.
[39] Agho, C. Avni, A. Bacu, A. Balazadeh, S. Shehzad Baloch, F. Bazakos, C. Cerekovic, N. Chaturvedi, P. Chauhan, H. De Smet, I. Dresselhaus, T. Ferreira, L. J. Fíla, J. Fortes, A. M. Fotopoulos, V. Francesca, S. García-Perez, P. Gong, W. Graci, S. Granell, A. Gulyas, A. Hidvegi, N. Honys, D. Jankovska-Bortkevic, E. Jonak, C. Jurkoniene, S. Kaiserli, E. Kanwar, M. Kavas, M. Koceska, N. Koceski, S. Kollist, H. Lakhneko, O. Lieberman-Lazarovich, M. Lukic, N. Luyckx, A. Mellidou, I. Mendes, M. Miras-Moreno, B. Mirmazloum, I. Mladenov, V. Mozafarian, M. Mueller-Roeber, B. Mühlemann, J. Munaiz, E. D. Niedbała, G. Nieto, C. Niinemets, Ü. Papa, S. Pedreno, M. Piekutowska, M. Provelengiou, S. Quinet, M. Radanovic, A. Resentini, F. Rieu, I. Manuela Rigano, M. Robert, H. S. Rojas, L. Samec, I. D. Paula Santos, A. Schrumpfova, P. P. Simm, S. Spanic, V. Stahl, Y. Sucur, R. Vlachonasios, K. E. Vraggalas, S. Vriezen, W. Wojciechowski, H. T. Rivero, R. and Fragkostefanakis, M. S. “Integrative approaches to enhance reproductive resilience of crops for climate-proof agriculture”, Plant Stress, 15, p. 100704, pp 1-24, 2025. doi: 10.1016/j.stress.2024.100704.
[40] Velinov, A. Koceska, N. and Koceski, S. “Virtual Tour Using Telepresence Robot and MQTT Protocol”, TEM Journal, pp. 750–756, 2024, doi: 10.18421/TEM131-78.
[41] Ristov R. and Koceski, S. “Quantum Resilient Public Key Cryptography in Internet of Things”, in 2023 12th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro: IEEE, 2023, pp. 1–4. doi: 10.1109/MECO58584.2023.10154994.
[42] Miller, M. Kisiel, Cembrowska-Lech, A. D. Durlik, I. and Miller, T. “IoT in Water Quality Monitoring—Are We Really Here?”, Sensors, 23(2), pp 1-12, 2023,. doi: 10.3390/s23020960.
[43] Meng, F. Fu, G. and Butler, D. “Cost-Effective River Water Quality Management using Integrated Real-Time Control Technology”, Environmental Science & Technology, 51(17), pp 9876-9886, 2017. doi: 10.1021/acs.est.7b01727.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nigerian Journal of Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The contents of the articles are the sole opinion of the author(s) and not of NIJOTECH.
NIJOTECH allows open access for distribution of the published articles in any media so long as whole (not part) of articles are distributed.
A copyright and statement of originality documents will need to be filled out clearly and signed prior to publication of an accepted article. The Copyright form can be downloaded from http://nijotech.com/downloads/COPYRIGHT%20FORM.pdf while the Statement of Originality is in http://nijotech.com/downloads/Statement%20of%20Originality.pdf
For articles that were developed from funded research, a clear acknowledgement of such support should be mentioned in the article with relevant references. Authors are expected to provide complete information on the sponsorship and intellectual property rights of the article together with all exceptions.
It is forbidden to publish the same research report in more than one journal.

