INTRA AND INTERMOLECULAR HYDROGEN BONDING IN POLYSACCHARIDE REINFORCEMENTS: THEIR EFFECTS ON THE MECHANICAL PROPERTIES OF POLYLACTIDE

Authors

  • O. P. Gbenebor Department of Metallurgical and Materials Engineering, University of Lagos, Lagos, NIGERIA
  • A. P. I. Popoola Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, SOUTH AFRICA

DOI:

https://doi.org/10.4314/njt.2025.4570

Keywords:

Biocomposite, Cellulose, Cornstalk, FTIR, Hydrogen bond, Lignin, Polylactide

Abstract

In this work, cellulose (CSC) and lignin (CSL), chemically sourced from cornstalk (CS), were separately used as reinforcement on polylactide (PLA). The aim was to evaluate the influence of intra and intermolecular hydrogen bond interactions in these polysaccharides on the mechanical properties of PLA. Cellulose was synthesized from 100 µm CS particles using 1 M NaOH, while 1 M HCl was used in extracting (CSL) from CS. Biocomposite containing 20 wt. % of each reinforcement was cast into tensile and flexural test specimens. The average hydrogen bonding EH calculated from Fourier Transform Infrared spectroscopy (FTIR) within the OH region of CSC was 4.63 kCal, while that from synthesized CSL was 4.47 kCal. Furthermore, the average bond distance R (evaluated from FTIR) was 2.78 and 2.83 Á for CSC and CSL, respectively. Both reinforcements improved the tensile properties of PLA, but the composite (PLA/CSC) with CSC as reinforcement gave a better result. The tensile strength increased from 30.1 MPa in PLA to 45.5 and 67 MPa in PLA/CSL and PLA/CSC, respectively. Unreinforced PLA began to yield from 15.1 MPa, while PLA/CSL and PLA/CSC commenced yielding from 39.4 and 54.8 MPa, respectively. The maximum elastic modulus (2.32 GPa) was maintained by PLA/CSC, while unreinforced PLA possessed a modulus of 1.96 GPa. The poorest response to elongation under tension (0.9 %) was recorded by unreinforced PLA, and PLA/CSC reached 4.7 % of its initial length before fracture.  The addition of CSC to PLA raised the flexural modulus and strength of PLA by 61.2 and 187.8 %, respectively. Morphology of the PLA fractured surface, analyzed via Scanning Electron Microscope (SEM), revealed minor cracks with flakes; the fractured surface was not as rough as that of PLA/CSC and PLA/CSL. This showed that unreinforced cast PLA displayed a brittle-like feature.

 

References

[1] Karan, P. and Chakraborty, R. “Biopolymers for Tissue Engineering”, ACSSYMPOSIUM SERIES, 1487, p. 259-276, 2024. Doi:10.1021/bk-2024-1487.ch011

[2] Taghizadeh-hesary, F. Rasoulinezhad, E. Yoshino, N. Chang, Y. Taghizadeh-hesary, F. and Morgan, P. “The Energy–Pollution–Health Nexus: A Panel Data Analysis of Low-and Middle-Income Asian Countries,” The Singapore Economic Review, 66(2), p. 435-455, 2021. https://doi.org/10.1142/S0217590820430043

[3] Oladunni, O. J. Mpofu, K. and Olanrewaju, O.A. “Greenhouse Gas Emissions and its Driving Forces in the Transport Sector of South Africa”, Energy Reports, 8, p. 2052-2061, 2022. https://doi.org/10.1016/j.egyr.2022.01.12

[4] Pires, J.B. Santos, F. N. Cruz, E. P. Fonseca, L.M. Pacheco, C.O. Rosa, B.N. Santana, L.R. Pereira, C.M.P. Carreno, N.L.V. Diaz, P.S. Zavareze, E.R. and Dias, A.R.G. “Cassava, Corn, Wheat, and Sweet Potato Native Starches: A Promising Biopolymer in the Production of Capsules by Electrospraying”, International Journal of Biological Macromolecules, 281, p. 1-15, 2024. https://doi.org/10.1016/j.ijbiomac.2024.136436

[5] Gbenebor, O. P. Adeosun, S. O. Adegbite, A.A. and Akinwande, C. “Organic and Mineral Acid Demineralizations: Effects on Crangon and Liocarcinus Vernalis–Sourced Biopolymer Yield and Properties”, Journal of Taibah University for Science, 12(6), p. 837-845, 2018.https://doi.org/10.1080/16583655.2018.1525845

[6] Odili, C. C. Ilomuanya, M. O. Sekunowo, O.I. Gbenebor, O.P. and Adeosun, S.O. “Knot Strength and Antimicrobial Evaluations of Partially Absorbable Suture”, Progress in Biomaterials, 12, p. 51-59, 2023. https://doi.org/10.1007/s40204-022-00212-8

[7] Nath, P. C. Sharma, R. Mahapatra, U. Mohanta, Y.K. Rustagi, S. Nayak, P.K. and Sridhar, K. “Sustainable Production of Cellulosic Biopolymers for Enhanced Smart Food Packaging: An up-to-date Review”, International Journal of Biological MAcromolecules, 273, p. 1-18, 2024. https://doi.org/10.1016/j.ijbiomac.2024.133090

[8] Miao, B. H. Headrick, B. J. Li, Z. Spanu, L. Loftus, D. J. and Lepech, M. D. “Development of Biopolymer Composites using Lignin: A Sustainable Technology for Fostering a Green Transition in the Construction Sector”, Cleaner Materials, 14, p. 1-11, 2024. https://doi.org/10.1016/j.clema.2024.100279

[9] Pande, D. C. Vu, T. H. Lu, Y. Sainsbury, F. Dau, V. T. and Rehm, H. A. “Restructuring Biologically Assembled Binding Protein-BiopolymerConjugates Toward Advanced Materials”, ACS Applied Materials & Interfaces, 16, p. 68983-68995, 2024. https://pubs.acs.org/doi/10.1021/acsami.4c15941

[10] Ochulor, E. F. Gbenebor, O. P. and Lawal, I. O. “Physicochemical, Morphology and Functional Group Analyses of Gelatin Extracted from Croaker Fish (Pseudotolithus senegalensis) Dcale for Suitability in Biomedical Applications”, Nigerian Research Journal of Engineering and Environmental Sciences, 7(2), p. 436-446, 2022.

[11] Fatchurrohman, N. Muhida, K. and Maidawat. “From Corn to Cassava: Unveiling PLA Origins for Sustainable PLA 3D Printing”, Journal Teknologi, 13(3), p. 87-93, 2023. https://doi.org/10.35134/jitekin.v13i2.101

[12] Pinos, J. A. “Thermo-mechanical Study of the Mixture of Polylactic Acid PLA Obtained from Potato Starch with an Aliphatic Copolyester PBSA (polybutylene Sucyanate Adipate)”, Revista DYNA, 89(221), p. 142-150, 2022. https://doi.org/10.15446/dyna.v89n221.98414

[13] Scaffaro, R. Maio, A. Gulino, E. F. and Micale, G.D.M. “PLA-Based Functionally Graded Laminates for Tunable Controlled Release of Carvacrol Obtained by Combining Electrospinning with Solvent Casting”, Reactive and Functional Polymers, 148, p. 1-9, 2020. https://doi.org/10.1016/j.reactfunctpolym.2020.104490

[14] Vălean, C. Linul, E. Palomba, G. and Epasto, G. “Single and Repeated Impact Behavior of Material Extrusion-Based Additive Manufactured PLA Parts”, Journal of Materials Research and Technology, 30, p. 1470-1481, 2024. https://doi.org/10.1016/j.jmrt.2024.03.150

[15] .Alex, Y. Divakaran, N. C. Pattanayak, I. Lakshyajit, B. Ajay, P. V. and Mohanty, S. “Comprehensive Study of PLA Material Extrusion 3D Printing Optimization and its Comparison with PLA Injection Molding through life Cycle Assessment”, Sustainable Materials and Technologies, 43, p.1-17, 2025. https://doi.org/10.1016/j.susmat.2024.e01222

[16] Akpan, E. I. Gbenebor, O. P. Igogori, E. A. Aworinde, A. K. Adeosun, S. O and Olaleye, S. A. “Electrospun Bio-Fibre Mat Based on Polylactide / Matural Fibre Particles”, Arab Journal of Basic and Applied Sciences, 26(1), p. 225-235, 2019. https://doi.org/10.1080/25765299.2019.1607995

[17] Eraslan, A. Altınbay, and Nofar, M. “In-situ Self-Reinforcement of Amorphous Polylactide (PLA) through Induced Crystallites Network and its Highly Ductile and Toughened PLA/poly (butylene Adipate-co-Terephthalate) (PBAT) Blends”, International Journal of Biological Macromolecules, 272, p. 1-12, 2024. https://doi.org/10.1016/j.ijbiomac.2024.132936

[18] Wang, W. Niu, B. Liu, R. Chen, H. Fang, X. Wu, W. Wang, G. Gao, H. and Mu, H. “Development of Bio-Based PLA/Cellulose Antibacterial Packaging and its Application for the Storage of Shiitake Mushroom”, Food Chemistry, 429, p. 1-12, 2023. https://doi.org/10.1016/j.foodchem.2023.136905

[19] Gbenebor, O. P. Ochulor, E. F. Shogunwa, A. A. and Adeosun, S. O. “Evaluation Studies of Hydrogen Bond, Crystallinity and Water Propensity of Treated Bambusa Vulgaris Cellulose Particles”, Nigerian Research Journal of Engineering and Environmental Sciences, 7(1), p. 260-272, 2022. 10.5281/zenodo.6725623

[20] Zhang, Z. Wang, W. Li, Y. Fu, K. Tong, X. Cao, B. and Chen, B. “3D Printing of Cellulose Nanofiber/Polylactic Acid Composites via an Efficient Dispersion Method”, Composites Communications, 43, p. 1-5, 2023. https://doi.org/10.1016/j.coco.2023.101731

[21] Agbakoba, V. C. Mokhena, T. C. Ferg, E. E. Hlangothi, S. P. and John, M. J. “PLA Bio Nanocomposites Reinforced with Cellulose Nanofbrils (CNFs) for 3D Printing Application”, Cellulose, 30, p. 11537–11559, 2023. https://link.springer.com/article/10.1007/s10570-023-05549-2

[22] Bononad, P. C. Freitas, P. A. V. Martínez, C. G. Chiralt, A. and Vargas, M. “Influence of the Purification Degree of Cellulose from Posidonia oceanica on the Properties of Cellulose-PLA Composites”, Polysaccharides, 5, p. 807-822, 2024. https://doi.org/10.3390/polysaccharides5040050

[23] Gbenebor, O. P. Odili, C. C. Obasa, V. D. Ochulor, E. F. Kusoro, S. O. Udogu-Obia, O. C. and Adeosun, S. O. “Morphological, Mechanical and Thermal Characteristics of PLA /Cocos nucifera L Husk and PLA/Zea mays Chaff Lignin Fibre Mats Composites”, Nigerian Journal of Technological Development, 20(4), p. 1-9, 2023. 10.4314/njtd.v20i4.1561

[24] Shar, A. S. Wang, N. Chen, T. Zhao, X. Weng, Y. “Development of PLA/Lignin Bio-Composites Compatibilized by Ethylene Glycol Diglycidyl Ether and Poly (ethylene glycol) Diglycidyl Ether”, Polymers, 15, p. 1-11, 2023. https://doi.org/10.3390/polym15204049

[25] Ren, Z. Zhou, X. Ding, K. Ji, T. Sun, H. Chi, X. Wei, Y. Xu, M. Cai, L. and Xia, C. “Design of Sustainable 3D Printable Polylactic Acid Composites with High Lignin Content”, International Journal of Biological Macromolecules, 253, p. 1-11, 2023. https://doi.org/10.1016/j.ijbiomac.2023.127264

[26] Ou, W. X. Weng, Y. Zeng, J. and Li, Y. D. “Fully Biobased Poly (lactic Acid)/Lignin Composites Compatibilized by Epoxidized Natural Rubber”, International Journal of Biological Macromolecules, 236, p. 1-9, 2023. https://doi.org/10.1016/j.ijbiomac.2023.123960

[27] Ye, H. He, Y. Li, H. You, T. and Xu, F. “Customized Compatibilizer to Improve the Mechanical Properties of Polylactic Acid/Lignin Composites via Enhanced Intermolecular Interactions for 3D Printing”, Industrial Crops and Products, 206, p. 1-11, 2023. https://doi.org/10.1016/j.indcrop.2023.117454

[28] Zaidi, S. A. S. Kwan, C. E. Mohan, D. Harun, S. Luthf, A.A.I. and Sajab, M.S. “Evaluating the Stability of PLA-Lignin Filament Produced by Bench-Top Extruder for Sustainable 3D Printing”, Materials, 16, p. 1-12, 2023. https://doi.org/10.3390/ma16051793

[29] Igathinathane, C. Womac, A. C. and Sokhansanj, S. “Corn Stalk Orientation Effect on Mechanical Cutting”, Biosystems Engineering, 107, p. 97-106, 2010. https://doi.org/10.1016/j.biosystemseng.2010.07.005

[30] Zeng, K. He, X. Yang, H. Wang, X. and Chen, H. “The Effect of Combined Pretreatments on the Pyrolysis of Corn Stalk”, Bioresource Technology, 281, p. 309-317, 2019. https://doi.org/10.1016/j.biortech.2019.02.107

[31] Gbenebor, O. P. Osabumwenre, F. O. and Adeosun, S. O. “Structural, Mechanical and Thermal Properties of Low-Density Polyethylene/Biomass Composite: Effects of Particle Size”, Kufa Journal of Engineering, 11(2), p. 67-83, 2020.

[32] Gbenebor, O. P. Olanrewaju, O. A. Usman, M.A. and Adeosun, S.O. “Lignin from Brewersʼ Spent Grain: Structural and Thermal Evaluations”, Polymers, 15(10), p.1-14, 2023. https://doi.org/10.3390/polym15102346

[33] Rasheed, H. A. Adeleke, A. A. Nzerem, P. Olosho, A. I. Ogedengbe, T. S. and Jesuloluwa, S. “Isolation, Characterization and Response Surface Method Optimization of Cellulose from Hybridized Agricultural Wastes”, Scientific Reports, p. 1-15, 2024. https://doi.org/10.1038/s41598-024-65229-4

[34] Srinivasan, S. and Venkatachalam, S. “One Pot Green Process for Facile Fractionation of Sorghum Biomass to Lignin, Cellulose and Hemicellulose Nanoparticles using Deep Eutectic Solvent”, International Journal of Biological Macromolecules, 277, p. 1-15, 2024. https://doi.org/10.1016/j.ijbiomac.2024.134295

[35] Ciolacu, D. Kovac, J. and Kokol, V. “The effect of the Cellulose-Binding Domain from Clostridium Cellulovorans on the Supramolecular Structure of Cellulose Fibres”, Carbohydrate Research, 345, p. 621-630, 2010. https://doi.org/10.1016/j.carres.2009.12.023

[36] Gbenebor, O. P. Adeosun, S. O. Lawal, G. I. and Jun, S. “Role of CaCO3 in the Physicochemical Properties of Crustacean-Sourced Structural Polysaccharides”, Materials Chemistry and Physics, 184, p. 203-209, 2016. https://doi.org/10.1016/j.matchemphys.2016.09.043

[37] Gbenebor, O. P. Adeosun, S. O. Lawal, G. I. Jun, S. and Olaleye, S.A. “Acetylation, Crystalline and Morphological Properties of Structural Polysaccharide from Shrimp Exoskeleton”, Engineering Science and Technology, an International Journal, 20, p. 1155–1165, 2017. https://doi.org/10.1016/j.jestch.2017.05.002

[38] Kubo, S. and Kadila, J. F. “Hydrogen Bonding in Lignin: A Fourier Transform Infrared Model Compound Study”, Biomacromolecles, 6, p. 2815-2821, 2005.

[39] Poletto, M. and Zattera, A. J. “Materials Produced from Plant Biomass. Part III: Degradation Kinetics and Hydrogen Bonding in Lignin”, Materials. Research, 16(5), p. 1065-1070, 2013. https://doi.org/10.1590/S1516-14392013005000112

[40] Pimentel, G. C. and Sederholm, C. H. “Correlation of Infrared Stretching Frequencies and Hydrogen Bond Distances in Crystals”, The Journal of Chemical Physics, 24, p. 639-641, 1955. 10.1063/1.1742588

[41] Hasheminejad, K. and Montazeri, A. “Enhanced Interfacial Characteristics in PLA/Graphene Composites Through Numerically-Designed Interface Treatment”, Applied Surface Science, 502, p. 1-11, 2020. https://doi.org/10.1016/j.apsusc.2019.144150

[42] Xia, Y. Li, X. Zhuang, J. Wang, W. Abbas, S. C. Fu, C. Zhang, H. Chen, T. Yuan, Y. Zhao, X. and Ni, Y. “Exploitation of Function Groups in Cellulose Materials for Lithium-Ion Batteries Applications”, Carbohydrate Polymers, 325, p. 1-29, 2024. https://doi.org/10.1016/j.carbpol.2023.121570

[43] Zhao, J. Zhang, Y. Cong, H. Zhang, C. and Wu, J. “Quantifying the Contribution of Lignin to Humic Acid Structures During Composting”, Chemical Engineering Journal, 492, p. 1-10, 2024. https://doi.org/10.1016/j.cej.2024.152204

[44] Gorgun, E. Ali, A. and Islam, M. S. “Biocomposites of Poly (Lactic Acid) and Microcrystalline Cellulose: Influence of the Coupling Agent on Thermomechanical and Absorption Characteristics”, ACS OMEGA, 9, p. 11523−11533, 2024.

[45] Johansson, M. Skrifvars, M. Kadi, N. and Dhakal, H. “Effect of Lignin Acetylation on the Mechanical Properties of Lignin-Polylactic Acid Biocomposites for Advanced Applications”, Industrial Crops and Products, 202, p. 1-11, 2023. 10.1016/j.indcrop.2023.117049

[46] Makri, S. Xanthopoulou, E. Klonos, P. A. Grigoropoulos, A. Kyritsis, A. Tsachouridis, K. Anastasiou, A. Deligkiozi, I. Nikolaidis, N. and Bikiaris, D. N. “Effect of Micro- and Nano-Lignin on the Thermal, Mechanical, and Antioxidant Properties of Biobased PLA–Lignin Composite Films”, Polymers, 14, p. 1-25, 2022. https://www.mdpi.com/2073-4360/14/23/5274

[47] Ruz-Cruz, M. A. Franco, P. J. F. Johnson, E.A.H. Chulim, M.V.M. Manzano, L.M.G. and González, A.V. “Thermal and Mechanical Properties of PLA-Based Multiscale Cellulosic Biocomposites”, Journal of Materials Research and Technology, 18, p. 485-495, 2024. https://doi.org/10.1016/j.jmrt.2022.02.072

[48] Ben, Y. Luo, H. Liu, W. Ba, Z. Cui, J. Guo, Z. and Sun, R. “Robust Flexural Performance of Modified Bamboo through Strategic Delignification and Carboxymethyl Cellulose Modification”, Composites Part A: Applied Science and Manufacturing, 190, p. 1-31, 2025. https://doi.org/10.1016/j.compositesa.2024.108655

[49] Zhang, S. Ji, A. Meng, X. Bhagia, S. Yoo, C.G. Harper, D.P. Zhao, X. Ragauskas, A.J. “Structure-Property Relationship between Lignin Structures and Properties of 3D-Printed Lignin Composites”, Composites Science and Technology, 249, p. 1-10, 2024. https://doi.org/10.1016/j.compscitech.2024.110487

[50] Schuetz, M. Benske, A. Smith, R. A. Watanabe, Y. Tobimatsu, Y. Ralph, J. Demura, T. Ellis, B. and Samuels, A.L. “Laccases Direct Lignification in the Discrete Secondary Cell Wall Domains of Protoxylem”, Plant Physiology, 66, p. 798–807, 2014. https://doi.org/10.1104/pp.114.245597

[51] Riseh, R.S. “Advancing Agriculture through Bioresource Technology: The Role of Cellulose-Based Biodegradable Mulches”, International Journal of Biological Macromolecules, 255, p. 1-10, 2024. https://doi.org/10.1016/j.ijbiomac.2023.128006

Downloads

Published

2025-12-19

Issue

Section

Chemical, Industrial, Materials, Mechanical, Metallurgical, Petroleum & Production Engineering

How to Cite

INTRA AND INTERMOLECULAR HYDROGEN BONDING IN POLYSACCHARIDE REINFORCEMENTS: THEIR EFFECTS ON THE MECHANICAL PROPERTIES OF POLYLACTIDE. (2025). Nigerian Journal of Technology, 44. https://doi.org/10.4314/njt.2025.4570