Modeling Contextual Understanding for Conversational Agents Development: A Systematic Review of Recent Advances and Challenges

Authors

  • G. C. Uzoaru
  • I. Ignatius Federal University of Technology Owerri
  • A. C. Onyeka
  • J. N. Odii

DOI:

https://doi.org/10.4314/njt.2025.4521

Keywords:

Contextual Modeling, Conversational Agents, Multi-turn Dialogue, Natural Language Understanding, Deep Learning Techniques

Abstract

Accurate capture of contextual information is a critical requirement for developing conversational agents capable of sustaining coherent and relevant multi-turn dialogues. By effectively understanding the context of an ongoing conversation, conversational agents can improve user experience through consistent dialogue flow, memory retention, and personalized responses. However, challenges persist in designing scalable and efficient context-aware models. This systematic review examines recent advancements, methodologies, and current challenges in context modeling for conversational agents, with a focus on techniques for enhancing coherence, contextual retention, and user-centered interactions. To conduct this review, a structured search was performed across multiple databases using terms such as contextual modeling, multi-turn dialogue, and contextual understanding in conversational AI. Studies meeting inclusion criteria were categorized based on their methodologies such as memory networks, attention mechanisms, graph-based approaches, and transformer-based models. Results reveal a strong reliance on deep learning architectures, particularly transformers, which have improved context retention across complex dialogues. Memory-augmented models, attention mechanisms, and graph-based approaches also show promise in handling context continuity and user-specific personalization. Despite these advancements, significant challenges remain in computational efficiency, scalability, and ethical considerations, especially regarding data privacy and user trust. In conclusion, while the field has made notable progress in enhancing context modeling, further work is required to address efficiency, scalability, and ethical implications. Future research in areas like dynamic context adaptation, multi-modal context integration, and session continuity holds potential for developing more sophisticated and responsible conversational agents.

References

[1 ] Hussain, S., Ameri Sianaki, O., & Ababneh, N. (2019). “A survey on conversational agents/chatbots classification and design techniques”. In Web, Artificial Intelligence and Network Applications: Proceedings of the Workshops of the 33rd International Conference on Advanced Information Networking and Applications (WAINA-2019) 33 (pp. 946-956). Springer International Publishing.

[ 2] Schachner, T., Keller, R., & v Wangenheim, F. (2020). “Artificial intelligence-based conversational agents for chronic conditions: systematic literature review”. Journal of medical Internet research, 22(9), e20701.

[ 3] Wahde, M., & Virgolin, M. (2022). “Conversational agents: Theory and applications”. In HANDBOOK ON COMPUTER LEARNING AND INTELLIGENCE: Volume 2: Deep Learning, Intelligent Control and Evolutionary Computation (pp. 497-544).

[ 4] Casheekar, A., Lahiri, A., Rath, K., Prabhakar, K. S., & Srinivasan, K. (2024). “A contemporary review on chatbots, AI-powered virtual conversational agents, ChatGPT: Applications, open challenges and future research directions”. Computer Science Review, 52, 100632.

[ 5] Tudor Car, L., Dhinagaran, D. A., Kyaw, B. M., Kowatsch, T., Joty, S., Theng, Y. L., & Atun, R. (2020). “Conversational agents in health care: scoping review and conceptual analysis”. Journal of medical Internet research, 22(8), e17158.

[ 6] Diederich, S., Brendel, A. B., Morana, S., & Kolbe, L. (2022). “On the design of and interaction with conversational agents: An organizing and assessing review of human-computer interaction research”. Journal of the Association for Information Systems, 23(1), 96-138.

[ 7] Alnefaie, A., Singh, S., Kocaballi, B., & Prasad, M. (2021, January). “An overview of conversational agent: applications, challenges and future directions”. In 17th International Conference on Web Information Systems and Technologies. SCITEPRESS-Science and Technology Publications.

[ 8] Qureshi, F. K. (2024). “The Evolution of AI Algorithms: From Rule-Based Systems to Deep Learning”. Frontiers in Artificial Intelligence Research, 1(02), 250-288.

[ 9] Sharma, D., Sundravadivelu, K., Khengar, J., Thaker, D. J., Patel, S. N., & Shah, P. (2024). “Advancements in Natural Language Processing: Enhancing Machine Understanding of Human Language in Conversational AI Systems”. Journal of Computational Analysis and Applications (JoCAAA), 33(06), 713-721.

[ 10] Brandtzaeg, P. B., & Følstad, A. (2018). “Chatbots: changing user needs and motivations”. interactions, 25(5), 38-43.

[ 11] Chaves, A. P., & Gerosa, M. A. (2021). “How should my chatbot interact? A survey on social characteristics in human–chatbot interaction design”. International Journal of Human–Computer Interaction, 37(8), 729-758.

[ 12] He, L., Braggaar, A., Basar, E., Krahmer, E., Antheunis, M., & Wiers, R. (2024, July). “Exploring user engagement through an interaction lens: what textual cues can tell us about human-chatbot interactions”. In Proceedings of the 6th ACM Conference on Conversational User Interfaces (pp. 1-14).

[13] Ma, Y., Abbas, T., & Gadiraju, U. (2023, September). “ContextBot: Improving Response Consistency in Crowd-Powered Conversational Systems for Affective Support Tasks”. In Proceedings of the 34th ACM Conference on Hypertext and Social Media (pp. 1-14).

[14] Martins, A., Nunes, I., Lapão, L., & Londral, A. (2024). “nlocking human-like conversations: Scoping review of automation techniques for personalized healthcare interventions using conversational agents”. International Journal of Medical Informatics, 105385

[15 ] Mariani, M. M., Hashemi, N., & Wirtz, J. (2023). “Artificial intelligence empowered conversational agents: A systematic literature review and research agenda”. Journal of Business Research, 161, 113838.

[ 16 ] Huang, W., Hew, K. F., & Fryer, L. K. (2022). “Chatbots for language learning—Are they really useful? A systematic review of chatbot‐supported language learning”. Journal of Computer Assisted Learning, 38(1), 237-257.

[17 ] Mensio, M., Rizzo, G., & Morisio, M. (2018, April). “Multi-turn qa: A rnn contextual approach to intent classification for goal-oriented systems”. In Companion Proceedings of the The Web Conference 2018 (pp. 1075-1080).

[18 ] Nuruzzaman, M., & Hussain, O. K. (2020). “IntelliBot: A Dialogue-based chatbot for the insurance industry”. Knowledge-Based Systems, 196, 105810

[ 19] Asar, S. H., Jalalpour, S. H., Ayoubi, F., Rahmani, M. R., & Rezaeian, M. (2016). “PRISMA; preferred reporting items for systematic reviews and meta-analyses”. Journal of Rafsanjan University of Medical Sciences, 15(1), 68-80.

[ 20] Kusal, S., Patil, S., Choudrie, J., Kotecha, K., Mishra, S., & Abraham, A. (2022). “AI-based conversational agents: a scoping review from technologies to future directions”. IEEE Access, 10, 92337-92356.

[ 21 ] Allouch, M., Azaria, A., & Azoulay, R. (2021). “Conversational agents: Goals, technologies, vision and challenges”. Sensors, 21(24), 8448.

[ 22 ] Sajun, A. R., Zualkernan, I., & Sankalpa, D. (2024). “A Historical Survey of Advances in Transformer Architectures”. Applied Sciences, 14(10), 4316.

[23 ] Hadi, M. U., Al Tashi, Q., Shah, A., Qureshi, R., Muneer, A., Irfan, M., ... & Shah, M. (2024). “Large language models: a comprehensive survey of its applications, challenges, limitations, and future prospects”. Authorea Preprints.

[24 ] Yang, B., Wang, L., Wong, D. F., Shi, S., & Tu, Z. (2021). “Context-aware self-attention networks for natural language processing”. Neurocomputing, 458, 157-169.

[ 25] Sun, Y., Yuan, N. J., Xie, X., McDonald, K., & Zhang, R. (2017). “Collaborative intent prediction with real-time contextual data”. ACM Transactions on Information Systems (TOIS), 35(4), 1-33.

[ 26 ] Notable transformer-based models, such as BERT and GPT-3, represent major advancements in generating coherent, contextually accurate responses for conversational agents.

[27 ] Liu, Q., Yogatama, D., & Blunsom, P. (2022). “Relational memory-augmented language models”. Transactions of the Association for Computational Linguistics, 10, 555-572.

[28 ] Ma, G., Vo, V. A., Willke, T. L., & Ahmed, N. K. (2023). “Memory-Augmented Graph Neural Networks: A Brain-Inspired Review”. IEEE Transactions on Artificial Intelligence.

[ 29 ] Ren, X., Chen, T., Nguyen, Q. V. H., Cui, L., Huang, Z., & Yin, H. (2024). “Explicit knowledge graph reasoning for conversational recommendation”. ACM Transactions on Intelligent Systems and Technology, 15(4), 1-21.

[30 ] Chen, J., Liu, Z., Huang, X., Wu, C., Liu, Q., Jiang, G., ... & Chen, E. (2024). “When large language models meet personalization: Perspectives of challenges and opportunities”. World Wide Web, 27(4), 42.

[31 ] Gillioz, A., Casas, J., Mugellini, E., & Abou Khaled, O. (2020, September). “Overview of the Transformer-based Models for NLP Tasks”. In 2020 15th Conference on computer science and information systems (FedCSIS) (pp. 179-183). IEEE.

[32 ] McTear, M., & Ashurkina, M. (2024). “Transforming conversational AI: Exploring the power of large language models in interactive conversational agents”. Springer Nature.

[33 ] Noh, J., & Kavuluru, R. (2021). “Improved biomedical word embeddings in the transformer era”. Journal of biomedical informatics, 120, 103867.

[34 ] Metheniti, E. (2023). What do you know, BERT? Exploring the linguistic competencies of Transformer-based contextual word embeddings (Doctoral dissertation, Université Toulouse le Mirail-Toulouse II).

[35 ] Ghaith, S. (2024). “Deep context transformer: bridging efficiency and contextual understanding of transformer models”. Applied Intelligence, 54(19), 8902-8923.

[36 ] Manu, B. K. (2023). “A Bridge between Graph Neural Networks and Transformers: Positional Encodings as Node Embeddings”.

[37 ] Sharaf Al-deen, H. S., Zeng, Z., Al-sabri, R., & Hekmat, A. (2021). “An improved model for analyzing textual sentiment based on a deep neural network using multi-head attention mechanism”. Applied System Innovation, 4(4), 85.

[38 ] Naseem, U., Razzak, I., Musial, K., & Imran, M. (2020). “Transformer based deep intelligent contextual embedding for twitter sentiment analysis”. Future Generation Computer Systems, 113, 58-69.

[39 ] Singh, S., Kumar, M., Kumar, A., Verma, B. K., Abhishek, K., & Selvarajan, S. (2024). “Efficient pneumonia detection using Vision Transformers on chest X-rays”. Scientific Reports, 14(1), 2487.

[40 ] Hernández, A., & Amigó, J. M. (2021). “Attention mechanisms and their applications to complex systems”. Entropy, 23(3), 283.

[41 ] He, T., Tan, X., Xia, Y., He, D., Qin, T., Chen, Z., & Liu, T. Y. (2018). “Layer-wise coordination between encoder and decoder for neural machine translation”. Advances in Neural Information Processing Systems, 31.

[ 42] Li, S., Zhang, L., Wang, Z., Wu, D., Wu, L., Liu, Z., ... & Li, S. Z. (2023). “Masked modeling for self-supervised representation learning on vision and beyond”. arXiv preprint arXiv:2401.00897.

[43 ] Asadi, A., & Safabakhsh, R. (2020). “The encoder-decoder framework and its applications”. Deep learning: Concepts and architectures, 133-167.

[44 ] Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). “Deep learning--based text classification: a comprehensive review”. ACM computing surveys (CSUR), 54(3), 1-40.

[ 45] Bansal, G., Chamola, V., Hussain, A., Guizani, M., & Niyato, D. (2024). “Transforming conversations with AI—a comprehensive study of ChatGPT”. Cognitive Computation, 1-24.

[ 46] Raiaan, M. A. K., Mukta, M. S. H., Fatema, K., Fahad, N. M., Sakib, S., Mim, M. M. J., ... & Azam, S. (2024). “A review on large Language Models: Architectures, applications, taxonomies, open issues and challenges”. IEEE Access.

[ 47 ] Bansal, G., Chamola, V., Hussain, A., Guizani, M., & Niyato, D. (2024). “Transforming conversations with AI—a comprehensive study of ChatGPT”. Cognitive Computation, 1-24.

[ 48 ] Nazir, A., & Wang, Z. (2023). “A comprehensive survey of ChatGPT: advancements, applications, prospects, and challenges”. Meta-radiology, 100022.

[49 ] Nassiri, K., & Akhloufi, M. (2023). “Transformer models used for text-based question answering systems”. Applied Intelligence, 53(9), 10602-10635.

[50 ] Gruetzemacher, R., & Paradice, D. (2022). “Deep transfer learning & beyond: Transformer language models in information systems research”. ACM Computing Surveys (CSUR), 54(10s), 1-35.

[51 ] Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., ... & Zhu, J. (2021). “Pre-trained models: Past, present and future”. AI Open, 2, 225-250.

[52 ] Sur, C. (2020). “RBN: enhancement in language attribute prediction using global representation of natural language transfer learning technology like Google BERT”. SN Applied Sciences, 2(1), 22.

[53 ] Žužemič, J. (2023). “Memory augmented Neural Networks: Analyzing memory augmented neural network architectures for incorporating external memory to enhance learning and reasoning”. Australian Journal of Machine Learning Research & Applications, 3(2), 269-278.

[54 ] Esteva, A., Kale, A., Paulus, R., Hashimoto, K., Yin, W., Radev, D., & Socher, R. (2021). “COVID-19 information retrieval with deep-learning based semantic search, question answering, and abstractive summarization”. NPJ digital medicine, 4(1), 68.

[55 ] Ali, M., Agrawal, A., & Roy, K. (2020, August). “RAMANN: in-SRAM differentiable memory computations for memory-augmented neural networks”. In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (pp. 61-66).

[ 56 ] Wu, C. S. (2019). “Learning to memorize in neural task-oriented dialogue systems”. arXiv preprint arXiv:1905.07687.

[ 57 ] Belser, C. A. (2023). “Comparison of natural language processing models for depression detection in chatbot dialogues Doctoral dissertation”. Massachusetts Institute of Technology.

[58 ] Guo, J., Li, N., Qi, J., Yang, H., Li, R., Feng, Y., ... & Xu, M. (2023). “Empowering Working Memory for Large Language Model Agents”. arXiv preprint arXiv:2312.17259.

[59 ] Sakhinana, S. S., Aripirala, K. S. S., Gupta, S., & Runkana, V. (2024). “Joint Hypergraph Rewiring and Memory-Augmented Forecasting Techniques in Digital Twin Technology”. arXiv preprint arXiv:2408.12634.

[60 ] Lv, Z., Qiao, L., Yang, S., Li, J., Lv, H., & Piccialli, F. (2022). “Memory‐augmented neural networks based dynamic complex image segmentation in digital twins for self‐driving vehicle”. Pattern Recognition, 132, 108956.

[61 ] Wu, C. S. (2019). “Learning to memorize in neural task-oriented dialogue systems”. arXiv preprint arXiv:1905.07687.

[ 62 ] Belser, C. A. (2023). Comparison of natural language processing models for depression detection in chatbot dialogues (Doctoral dissertation, Massachusetts Institute of Technology).

[ 63] Guo, J., Li, N., Qi, J., Yang, H., Li, R., Feng, Y., ... & Xu, M. (2023). “Empowering Working Memory for Large Language Model Agents”. arXiv preprint arXiv:2312.17259.

[64 ] Sakhinana, S. S., Aripirala, K. S. S., Gupta, S., & Runkana, V. (2024). “Joint Hypergraph Rewiring and Memory-Augmented Forecasting Techniques in Digital Twin Technology”. arXiv preprint arXiv:2408.12634.

[ 65] Lv, Z., Qiao, L., Yang, S., Li, J., Lv, H., & Piccialli, F. (2022). “Memory‐augmented neural networks based dynamic complex image segmentation in digital twins for self‐driving vehicle”. Pattern Recognition, 132, 108956.

[ 66] Liang, F., Qian, C., Yu, W., Griffith, D., & Golmie, N. (2022). “Survey of graph neural networks and applications”. Wireless Communications and Mobile Computing, 2022(1), 9261537.

[ 67] Jia, Y., Wang, J., Shou, W., Hosseini, M. R., & Bai, Y. (2023). “Graph neural networks for construction applications”. Automation in Construction, 154, 104984.

[68 ] Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., ... & Li, Y. (2023). “A survey of graph neural networks for recommender systems: Challenges, methods, and directions”. ACM Transactions on Recommender Systems, 1(1), 1-51.

[69 ] Javdani Rikhtehgar, D., Tiddi, I., Wang, S., Schlobach, S., & Heylen, D. (2024). “Assessing the HI-ness of Virtual Heritage Applications with Knowledge Engineering”. In HHAI 2024: Hybrid Human AI Systems for the Social Good (pp. 173-187). IOS Press.

[70 ] Nazi, Z. A., & Peng, W. (2024, August). “Large language models in healthcare and medical domain: A review”. In Informatics (Vol. 11, No. 3, p. 57). MDPI.

[71 ] da Silva Gonçalves, D. (2023). “Leveraging Context-awareness in IoT Systems: An Approach with Voice Assistants”.

[72 ] Rane, N. L., Mallick, S. K., Kaya, O., & Rane, J. (2024). “Machine learning and deep learning architectures and trends: A review”. Applied Machine Learning and Deep Learning: Architectures and Techniques, 1-38.

[73 ] Singh, S., & Mahmood, A. (2021). “The NLP cookbook: modern recipes for transformer based deep learning architectures”. IEEE Access, 9, 68675-68702.

[74 ] Ray, P. P. (2023). “ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope”. Internet of Things and Cyber-Physical Systems, 3, 121-154.

[75 ] Keyvan, K., & Huang, J. X. (2022). “How to approach ambiguous queries in conversational search: A survey of techniques, approaches, tools, and challenges”. ACM Computing Surveys, 55(6), 1-40.

[76 ] Axelsson, A., Buschmeier, H., & Skantze, G. (2022). “Modeling feedback in interaction with conversational agents—a review”. Frontiers in Computer Science, 4, 744574.

[77 ] Deriu, J., Rodrigo, A., Otegi, A., Echegoyen, G., Rosset, S., Agirre, E., & Cieliebak, M. (2021). “Survey on evaluation methods for dialogue systems”. Artificial Intelligence Review, 54, 755-810.

[78 ] Kusal, S., Patil, S., Choudrie, J., Kotecha, K., Mishra, S., & Abraham, A. (2022). “AI-based conversational agents: a scoping review from technologies to future directions”. IEEE Access, 10, 92337-92356.

[79 ] Chow, J. C., & Li, K. (2024). “Ethical Considerations in Human-Centered AI: Advancing Oncology Chatbots Through Large Language Models”. JMIR Bioinformatics and Biotechnology, 5, e64406.

[80 ] Edu, J., Mulligan, C., Pierazzi, F., Polakis, J., Suarez-Tangil, G., & Such, J. (2022, October). “Exploring the security and privacy risks of chatbots in messaging services”. In Proceedings of the 22nd ACM internet measurement conference (pp. 581-588).

[81 ] Azad, M. A., Arshad, J., Mahmoud, S., Salah, K., & Imran, M. (2022). “A privacy‐preserving framework for smart context‐aware healthcare applications”. Transactions on Emerging Telecommunications Technologies, 33(8), e3634.

[82 ] Gumusel, E. (2024). “A literature review of user privacy concerns in conversational chatbots: A social informatics approach: An Annual Review of Information Science and Technology (ARIST) paper”. Journal of the Association for Information Science and Technology.

[83 ] Bansal, G., Chamola, V., Hussain, A., Guizani, M., & Niyato, D. (2024). “Transforming conversations with AI—a comprehensive study of ChatGPT”. Cognitive Computation, 1-24.

[ 84 ] Allouch, M., Azaria, A., & Azoulay, R. (2021). “Conversational agents: Goals, technologies, vision and challenges”. Sensors, 21(24), 8448.

[85 ] Venkatesh, A., Khatri, C., Ram, A., Guo, F., Gabriel, R., Nagar, A., ... & Raju, A. (2017). “On evaluating and comparing conversational agents.

[86 ] Roller, S., Boureau, Y. L., Weston, J., Bordes, A., Dinan, E., Fan, A., ... & Williamson, M. (2020). “Open-domain conversational agents: Current progress, open problems, and future directions”. arXiv preprint arXiv:2006.12442.

[ 87 ] Petroşanu, D. M., & Pîrjan, A. (2024). “Exploring Compression Strategies for Large Language Models Towards Efficient Artificial Intelligence Implementations”. Journal of Information Systems & Operations Management, 18(1), 225-260.

[88 ] Bibi, U., Mazhar, M., Sabir, D., Butt, M. F. U., Hassan, A., Ghazanfar, M. A., ... & Abdul, W. (2024). ”Advances in Pruning and Quantization for Natural Language Processing”. IEEE Access.

[89 ] Li, X., Yang, H., Yang, C., & Zhang, W. (2023). “Efficient Medical Knowledge Graph Embedding: Leveraging Adaptive Hierarchical Transformers and Model Compression”. Electronics, 12(10), 2315.

[ 90 ] Yang, C., Zhu, Y., Lu, W., Wang, Y., Chen, Q., Gao, C., ... & Chen, Y. (2024). “Survey on knowledge distillation for large language models: Methods, evaluation, and application”. ACM Transactions on Intelligent Systems and Technology.

[91 ] Chung, K., & Park, R. C. (2019). “Chatbot-based heathcare service with a knowledge base for cloud computing”. Cluster Computing, 22, 1925-1937.

[ 92 ] Chung, K., & Park, R. C. (2019). “Chatbot-based heathcare service with a knowledge base for cloud computing”. Cluster Computing, 22, 1925-1937.

[93 ] Liang, Q., Shenoy, P., & Irwin, D. (2020, October). “Ai on the edge: Characterizing ai-based iot applications using specialized edge architectures”. In 2020 IEEE International symposium on workload characterization (IISWC) (pp. 145-156). IEEE.

[ 94 ] Gunnam, G. R., Inupakutika, D., Mundlamuri, R., Kaghyan, S., & Akopian, D. (2024). “Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems and A Case Study”. IEEE Access.

[95 ] Yadav, A., Patel, A., & Shah, M. (2021). “A comprehensive review on resolving ambiguities in natural language processing”. AI Open, 2, 85-92.

[ 96] Nassiri, K., & Akhloufi, M. (2023). “Transformer models used for text-based question answering systems”. Applied Intelligence, 53(9), 10602-10635.

[ 97] Baek, J., Chandrasekaran, N., Cucerzan, S., Herring, A., & Jauhar, S. K. (2024, May). “Knowledge-augmented large language models for personalized contextual query suggestion”. In Proceedings of the ACM on Web Conference 2024 (pp. 3355-3366).

[98 ] Kocaballi, A. B., Berkovsky, S., Quiroz, J. C., Laranjo, L., Tong, H. L., Rezazadegan, D., ... & Coiera, E. (2019). “The personalization of conversational agents in health care: systematic review”. Journal of medical Internet research, 21(11), e15360.

[99 ] Dobbala, M. K., & Lingolu, M. S. S. (2024). ”Conversational AI and Chatbots: Enhancing User Experience on Websites”. American Journal of Computer Science and Technology, 10(3), 62-70.

[ 100] Skjæveland, M. G., Balog, K., Bernard, N., Łajewska, W., & Linjordet, T. (2024). “An ecosystem for personal knowledge graphs: A survey and research roadmap”. AI Open, 5, 55-69

[101 ] Izadi, S., & Forouzanfar, M. (2024). “Error Correction and Adaptation in Conversational AI: A Review of Techniques and Applications in Chatbots”. AI, 5(2), 803-841.

[102 ] Ahmed, M., Khan, H., Iqbal, T., Alarfaj, F. K., Alomair, A., & Almusallam, N. (2023). ”On solving textual ambiguities and semantic vagueness in MRC based question answering using generative pre-trained transformers”. PeerJ Computer Science, 9, e1422.

[103 ] Li, L., Li, J., Wang, H., & Nie, J. (2024). “Application of the transformer model algorithm in chinese word sense disambiguation: a case study in chinese language”. Scientific Reports, 14(1), 6320.

[ 104 ] Salammagari, A. R. R., & Srivastava, G. (2024). “Adaptive chatbots: enhancing user experience through interactive learning and dynamic response refinemen”t.

[105 ] Chen, J., Liu, Z., Huang, X., Wu, C., Liu, Q., Jiang, G., ... & Chen, E. (2024). “When large language models meet personalization: Perspectives of challenges and opportunities”. World Wide Web, 27(4), 42.

[ 106 ] Shumanov, M., & Johnson, L. (2021). “Making conversations with chatbots more personalized”. Computers in Human Behavior, 117, 106627.

[107 ] Nama, P. (2023). “AI-Powered Mobile Applications: Revolutionizing User Interaction Through Intelligent Features and Context-Aware Services”.

[108 ] Tufail, S., Riggs, H., Tariq, M., & Sarwat, A. I. (2023). “Advancements and challenges in machine learning: A comprehensive review of models, libraries, applications, and algorithms”. Electronics, 12(8), 1789.

[109 ] Henderson, P., Sinha, K., Angelard-Gontier, N., Ke, N. R., Fried, G., Lowe, R., & Pineau, J. (2018, December). “Ethical challenges in data-driven dialogue systems”. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp. 123-129).

[110 ] Alom, N. B. (2024). “A comprehensive analysis of customer behavior analytics, privacy concerns, and data protection regulations in the era of big data and machine learning”. International Journal of Applied Machine Learning and Computational Intelligence, 14(5), 21-40.

[ 111 ] Mai, N. D., Lee, B. G., & Chung, W. Y. (2021). “Affective computing on machine learning-based emotion recognition using a self-made EEG device”. Sensors, 21(15), 5135.

[112 ] Giordani, J. (2024). “Mitigating Chatbots AI Data Privacy Violations in the Banking Sector: A Qualitative Grounded Theory Study”. European Journal of Applied Science, Engineering and Technology, 2(4), 14-65.

[113 ] Khurana, R. (2021). “Implementing encryption and cybersecurity strategies across client, communication, response generation, and database modules in e-commerce conversational ai systems”. International Journal of Information and Cybersecurity, 5(5), 1-22.

[114 ] Bhardwaj, V., Khan, S. S., Singh, G., Patil, S., Kuril, D., & Nahar, S. (2024). “Risks for Conversational AI Security”. Conversational Artificial Intelligence, 557-587.

[ 115 ] Acquisti, A., Adjerid, I., Balebako, R., Brandimarte, L., Cranor, L. F., Komanduri, S., ... & Wilson, S. (2017). “Nudges for privacy and security: Understanding and assisting users’ choices online”. ACM Computing Surveys (CSUR), 50(3), 1-41.

[ 116 ] Mozafari, N., Weiger, W. H., & Hammerschmidt, M. (2022). “Trust me, I'm a bot–repercussions of chatbot disclosure in different service frontline settings”. Journal of Service Management, 33(2), 221-245.

[117 ] Choudhury, A., & Shamszare, H. (2023). “Investigating the impact of user trust on the adoption and use of ChatGPT: survey analysis”. Journal of Medical Internet Research, 25, e47184.

[118 ] Garcia Valencia, O. A., Suppadungsuk, S., Thongprayoon, C., Miao, J., Tangpanithandee, S., Craici, I. M., & Cheungpasitporn, W. (2023). “Ethical implications of chatbot utilization in nephrology”. Journal of Personalized Medicine, 13(9), 1363.

[119 ] Gemiharto, I. (2024). “Analysis of Personal Data Preservation Policy in Utilizing AI-Based Chatbot Applications in Indonesia”. Medium, 12(1), 63-78.

[120 ] Dewitte, P. (2024). “Better alone than in bad company: Addressing the risks of companion chatbots through data protection by design”. Computer Law & Security Review, 54, 106019.

Downloads

Published

2025-12-03

Issue

Section

Computer, Telecommunications, Software, Electrical & Electronics Engineering

How to Cite

Modeling Contextual Understanding for Conversational Agents Development: A Systematic Review of Recent Advances and Challenges. (2025). Nigerian Journal of Technology, 44. https://doi.org/10.4314/njt.2025.4521