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Abstract 

Steel Reinforced Concrete (RC) is widely used in the construction industry due 

to its effective compressive and tensile strengths. This composite nature allows 

for withstanding diverse loading conditions. Assessing the structural condition 

of RC is essential for determining the extent of repair and retrofitting required 

for aged structures. Non-destructive testing (NDT) methods are commonly 

employed for this purpose. The objective of this study is to develop suitable 

correlations between compressive strengths of RC (fRC) and results obtained 

from two ND Tests - Schmidt rebound hammer (RS) test and Ultrasonic pulse 

velocity (Ѵ) test using machine learning techniques (ML) on the software 

platform of MATLAB. The experimental program involved casting 450 RC 

specimens, which included beam specimens with dimensions 70 cm × 15 cm × 

15 cm and standard cube specimens with dimensions 15 cm × 15 cm × 15 cm, 

using concrete grades ranging from M25 to M35. The beams were reinforced 

with 2.68% longitudinal steel and provided with nominal concrete covers of 20 

mm and 40 mm. NDT measurements (RS and Ѵ) were taken on the beam 

specimens, while compressive strength was determined from the companion 

cube specimens via destructive compression testing. The collected data were 

then analyzed using MATLAB’s Classification Learner app. A Support Vector 

Machine (SVM) model was used to establish the correlation between RS and fRC, 

while a Decision Tree classifier refined the Ѵ dataset with an accuracy of 99%. 

Using the ML approach, the data were effectively segregated through the 

developed models, which were further utilized to estimate the actual compressive 

strength of RC from NDT results. The study demonstrates that ML-based models 

can reliably estimate in-situ compressive strength from NDT results, yielding a 

practical approach for structural health assessment of RC. 
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1.0  INTRODUCTION 

Over the last four decades, researchers have been 

working on establishing strength correlations of 

conventional concrete using NDT methods, 

particularly the RS test and Ѵ test. With the growing 

use of Steel Reinforced Concrete (RC), it has become 

equally important to develop reliable assessment 

techniques for evaluating construction quality. In 

recent years, the integration of NDT with data-driven 

predictive approaches such as regression models and 

ML algorithms has been increasingly explored to 

improve the accuracy and efficiency of evaluations. 

The necessary corrections are required due to the 

presence of reinforcement (Table 1). True RS and Ѵ 

readings are estimated by multiplying the measured 

value by appropriate correction factors.   
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The readings of Ѵ in the presence of reinforcement 

bars within concrete are higher than those in plain 

concrete [2]. As Ѵ waves partially travel through the 

reinforcement in RC structures, the measured velocity 

is higher, leading to inaccurate quality assessments of 

concrete based on these values. Plain concrete cubes 

measuring 150 mm × 150 mm × 150 mm and RC 

beams measuring 700 mm × 150 mm × 150 mm with 

reinforcement percentages of 0.8%, 1.0%, 1.2%, and 

1.4% respectively, were tested using Ѵ instruments. 

Results showed that Ѵ values in reinforced samples 

were 6–14% higher than in plain concrete [3]. Since 

steel is much denser than concrete, the corresponding 

Ѵ values are expected to be higher. In an infinite steel 

medium, the Ѵ is typically around 5.90 km/s [4]. With 

the presence of steel reinforcement, the RS test yields 

higher rebound numbers than on unreinforced 

surfaces, potentially differing by 8-12 points [27]. RS 

and Ѵ readings were reduced by 9.4% and 8.1% 

respectively, under 80% compression stress applied to 

cubes. These values decreased by 2.5% and 1.4% 

respectively, under 80% flexural load on the RC beam. 

[27]Statistical models are developed nowadays using 

ML-AI techniques in which models learn from 

supervised or unsupervised data and predict the 

responses. The data-centric correlation equations were 

derived by Rathod et al. [5] from experimental results 

obtained using five different NDT methods, namely 

ground penetrating radar, half-cell potential (HCP), 

electric resistivity, infrared thermography, and Ѵ test. 

The study gave 2-dimensional contour and intensity 

maps to visualize and compare damage detection 

capabilities.   

 

In 2024, the Flying NDT system made a significant 

advancement in autonomous SCA, especially in hard-

to-reach areas. The developed robotic system 

addresses this by performing contact-based NDT 

using a hexacopter drone, integrated with two 

specialized sensors. A point sensor contains HCP, and 

electrical resistivity measurements were made using a 

two-point setup. A combined rolling sensor that 

incorporates a wheel-base system for simultaneous 

HCP and resistivity measurement via a four-point 

Schlumberger method was used. The sensor enabled 

the detection of chloride-induced corrosion before any 

visible sign appeared, thereby enhancing maintenance 

planning and structural safety [6]. 

 

 

 

Table 1: Empirical mathematical models suggested by various researchers for reinforced concrete using 

destructive and NDT tests 

Reference  Regression Equation Influencing Factors 

   [7] 

      
𝑓 =  0.677𝑒0.00009𝑣   

𝑓 = 1.4832𝑅𝑆 − 14.608, 𝑅2 = 0.9715 

Reinforced concrete M25, M35, M45 

MPa 

  [8] 𝑓 =  23.76𝑒0.2142𝑣  , 𝑅2  =  0.88  

𝑓 =  0.0115𝑅𝑆
2 + 0.8554𝑅𝑆 − 12.701 , 𝑅2  
= 0.989 

Prototype RC wall 48 MPa strength with 

construction defects such as 

Honeycombing, delamination, and 

voids. 

 

Although correlation models are readily available for 

determining the compressive strength of conventional 

plain concrete using NDT, they should not be directly 

applied to RC if the concrete cover is less. The 

presence of embedded steel reinforcement apparently 

increases the Rs and V values for RC when readings 

are taken at reinforced spots in comparison to those 

taken at unreinforced regions, thus falsely yielding 

higher values of strength. This discrepancy arises due 

to the significant difference in material densities. The 

density of steel bars is approximately 78.5 kN/m³, 

which is significantly higher than that of plain 

concrete, at 24 kN/m³. In such a case, using available 

equations of Rs and Ѵ, the estimated compressive 

strengths of RC (fRC) may appear apparently higher 

than the actual strength. Therefore, correction factors 

must be applied to adjust the measured RS and Ѵ 

values, ensuring they more accurately reflect true 

readings by accounting for the effects of 

reinforcement. These correction factors can be 

avoided if there is a way to segregate the readings 

taken on reinforced spots so that they can be discarded 

from the total number of readings. 

 

The objective of this study is to establish a correlation 

between the compressive strength of RC and the 

results obtained from two NDT techniques: the RS test 

and the Ѵ test, along with destructive compression 

testing. The M25–M35 range was selected because it 

represents the most widely used strength class for 

reinforced concrete slabs, beams, columns, and other 

moderately loaded structural elements. Cover depth 

has a significant influence on corrosion protection, 

thermal resistance, bond characteristics, and the 

effective stress distribution around reinforcement. The 

two cover values chosen represent two practical and 
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contrasting conditions: 20 mm simulates typical 

minimum covers used for internal members or slabs 

where exposure is mild; 40 mm represents a 

conservative cover used for elements exposed to 

aggressive environments in columns and beam 

members, and for larger members where greater cover 

is needed for anchorage and corrosion allowance. 

Selecting these two discrete values enables 

assessment of how cover depth affects the accuracy 

and sensitivity of NDT techniques and strength-

prediction models as cover alters both wave 

propagation and surface hardness readings. NDT 

instruments were operated at the reinforced spot and 

unreinforced spot of the same specimen for 

segregating true-false readings. Accordingly, this 

study aims to perform classification and regression 

analysis using both destructive test data and NDT 

values for RC, to distinguish between true and false 

values of RS and Ѵ without relying on correction 

factors. Machine Learning (ML) algorithms 

implemented in MATLAB were used for this purpose. 

 

 

2.0  MATERIALS, MIX DESIGN, AND DATA 

COLLECTION 

 

2.1  Material and Experimental Program  

The materials were selected according to Table 2, 

and mixes were prepared as outlined in Table 3.  

The mix design Table 3 for concrete grades M25, 

M30, and M35 according to the guidelines of IS 

10262:2019 [11] and IS 456:2000 [12]. 
 

 Table 2: Materials used for the mix design 

Material Source Specific 

Gravity 

Refere

nce 

Cement Ultra-tech PPC 

43 Grade 

2.86 [9] 

Sand River sand 

procured from the 

local market, 

Zone II 

2.44 Table 9 

[10] 

Coarse 

Aggregate 

Kakani quarry, 

Jodhpur, 

Rajasthan, India 

2.65 Table 7 

[10] 

 

Table 3: Mix design of conventional concrete per/ m3 

Material M 25 

Quantity (Kg/m3) 

M 30 

Quantity (Kg/m3) 

M 35 

Quantity (Kg/m3) 

Water 176.4 176.4 176.4 

Cement 392 420 441 

Chemical Admixture  3.92 4.2 4.41 

Fine Aggregate 561 575 582 

Coarse Aggregate (20 mm) 679 696 678 

Coarse Aggregate (10 mm) 452 464 478 

Adopted Mix Ratio 0.45:1:1.43:288 0.42:1:1.37:2.76 0.40:1:1.32:2.62 

 

3.0  METHODOLOGY  

The NDT and destructive test procedures performed 

on RC elements, covering the RS test, Ѵ test, and 

compressive strength testing on companion cubes. 

The RS tests, shown in Figure 2(a), conducted as per 

IS 516: Part 5/Sec 4–2020, provided true (T) values of 

rebound number ranges of 25–30, 30–35, and 35–41 

for M25, M30, and M35 grades, respectively, when 

tested on plain concrete cubes (table 6).  

 

The Ѵ tests, carried out using the direct transmission 

method as per IS 516: Part 5/Sec 1–2018, indicated 

true (T) velocities of 3.26 km/s, 3.86 km/s, and 3.95 

km/s for M25, M30, and M35 grades, respectively,  

 

 

 

when tested on plain concrete beams. Destructive 

compressive strength tests were performed on 

companion cube specimens at 28 days to validate 

NDT results, as shown in Figure (d).  

 

Table 7 (a) summarizes 450 datasets obtained from RS 

tests on RC beams with 20 mm and 40 mm cover 

depths, along with corresponding destructive test 

results on cube specimens, providing a comprehensive 

database for correlation analysis. In this dataset, ‘RS’ 

denotes the rebound hammer reading taken on the RC 

beams; ‘fRC’ represents the corresponding 

compressive strength.  

 

 

https://doi.org/10.4314/njt.2025.5155
http://creativecommons.org/licenses/by-nc-nd/4.0/


MACHINE LEARNING CLASSIFICATION TECHNIQUES TO PRED… 4 
 

 © 2025 by the author(s). Licensee NIJOTECH.                                                                  Vol. 44, No. 4, December, 2025 
This article is open access under the CC BY-NC-ND license.                                                                  
 https://doi.org/10.4314/njt.2025.5155 

http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Table 4: Casting details of beam and cube specimens 

Parameter Details 

Total specimens cast 450 beams and 450 companion cubes 

Beam dimensions 700 mm × 150 mm × 150 mm 

Cube dimensions 15 cm × 15 cm 

Reinforcement bar length 650 mm 

Reinforcement ratio (Ast/Ac) 2.68% (Refer to Table 5) 

Clear cover (bottom/side) 20 mm and 40 mm (bottom), 25 mm (side) 

Concrete cover block size 20 mm × 25 mm × 40 mm 

Mix design As per Table 3 

Casting method Concrete poured in 3 layers, compacted by 35 strokes per 

layer (tamping rod) 

Standard followed for compaction and curing IS 1199 Part-5 [13] 

Vibration 10–15 seconds using a handheld concrete vibrator 

Surface finishing Trowel finish 

De-moulding time 24 hours after casting 

Curing method Wet curing by full water immersion 

Curing duration & temperature 28 days at 27 ± 2°C 

 

The true readings were taken from a concrete 15 cm3 

cube sample, which was placed in a compression 

testing machine (CTM) under a fixed load of 7 N/mm2, 

and RS readings (horizontal in direction) were taken 

on surfaces (Figure 2(a)). Nine readings were taken on 

each of two opposite vertical faces accessible in CTM.  

While the false readings correspond to RC beams 

(Figure 2(b)), where the presence of reinforcement 

alters the rebound reading, ‘D’ is the decision factor 

used to segregate true (T) and false (F) rebound values 

for improved correlation accuracy. 

 

 

Table 5: RC reinforcement detail 

Type HYSD 

Elastic limit (MPa) 500 

Φ (mm) 16 

Number 3 

Ast (cm2)  6.03 

Ac (cm2) 225 

Ast/ Ac (%) 2.68 

 

 

Table 6: Summary of NDT and DT procedures and results for RC elements 

Test Name Procedure/ 

Details 

Concrete Grade Actual Result 

Range/Avg. 

RS Test as per IS 

516: Part 5 / Sec 4 

– 2020 [15]  

N-type RS with 2.207 N-m impact energy. 

The Rebound Hammer is applied 

horizontally on beams for consistent 

results. Additional tests on cubes of the 

same grade for more accuracy. 

M25 

M30 

M35 

25–30 

30–35 

35–41 

Ѵ Test as per IS 

516: Part 5 / Sec 1 

– 2018 [16] 

The direct transmission method is used for 

pulse velocity. Ensures maximum energy 

transfer and precision. Evaluates internal 

quality and homogeneity of concrete. 

M25 

M30 

M35 

3.26 km/s 

3.86 km/s 

3.95 km/s 

Compressive 

Strength Test as per 

IS 516: 2021 [14] 

Carried out on all cube specimens at 28 

days of curing. Using a calibrated 

compression testing machine 

M25 

M30 

M35 

Values compared 

with NDT results; 

not explicitly listed 
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Figure 1:  Experiment work processing steps 

 

3.1 Data Collection 

In the dataset represented in Table 7 (b), Ѵ denotes the 

measured pulse velocity values, fRC represents the 

compressive strength determined from cube testing, 

and D is the decision factor used to distinguish 

between true and false readings. The true readings are 

taken from plain concrete beams, while the false  

 

readings correspond to RC beams, where the presence 

of reinforcement alters the pulse transmission. This 

distinction allows the reinforcement effect to be 

incorporated into the correlation analysis, thereby 

improving the accuracy of strength prediction models. 

 

 
Table 7(a): 450 Data sets using the RS test performed on the RC section at a depth of 20mm and 40 mm 

cover, and destructive test on cubes 

RS fRC D RS fRC D RS fRC D 

35 23.36 F 27.22 23.74 T 39.00 35.401 T 

35 23.37 F 27.22 23.80 T 47.00 35.402 F 

35 23.38 F 27.22 23.87 T 40.00 35.405 T 

35 23.45 F 27.23 23.93 T 36.95 35.417 T 

35 23.45 F 28.64 24.01 T 47.00 35.515 F 

35 23.10 F 28.65 24.02 T 47.00 35.558 F 

35 23.14 F 28.69 24.05 T 35.00 35.587 T 

37 25.48 F 30.50 25.87 T 35.82 35.599 T 

35 24.77 F 25.00 25.93 T 36.25 35.749 T 

35 24.78 F 25.85 25.98 T 37.00 35.785 T 

35 24.81 F 26.35 26.02 T 45.00 35.813 F 

32.61 27.28 T 27.00 26.02 T 48.00 35.814 F 

https://doi.org/10.4314/njt.2025.5155
http://creativecommons.org/licenses/by-nc-nd/4.0/


MACHINE LEARNING CLASSIFICATION TECHNIQUES TO PRED… 6 
 

 © 2025 by the author(s). Licensee NIJOTECH.                                                                  Vol. 44, No. 4, December, 2025 
This article is open access under the CC BY-NC-ND license.                                                                  
 https://doi.org/10.4314/njt.2025.5155 

http://creativecommons.org/licenses/by-nc-nd/4.0/ 

32.65 27.57 T 26.00 23.07 T 47.00 35.832 F 

32.71 27.82 T 30.00 23.07 T 44.00 35.842 F 

32.72 27.83 T 28.69 24.11 T 37.85 35.844 T 

32.73 27.86 T 28.72 24.13 T 39.00 35.844 T 

32.73 27.86 T 29.00 23.20 T 45.00 35.862 F 

32.75 28.09 T 30.00 23.24 T 38.22 35.989 T 

32.80 28.23 T 30.45 23.25 T 35.00 35.989 T 

22.98 23.21 T 30.36 23.26 T 36.12 36.062 T 

: : : : : : : : : 

: : : : : : : : : 

30.36 23.26 T 29.00 23.10 T 32 29.32 T 

29.25 23.36 T 28.65 23.14 T 36 34.00 T 

29.15 23.37 T 26.00 25.48 T 40 38.81 T 

28.47 23.38 T 30.51 24.77 T 39 36.60 T 

 

 
Figure 2(a): RS test performed on cube specimen 

 

 
Figure 2(b): RS test performed at the location of the 

bar 

 

 

Table 7 (b): 450 Data sets using the Ѵ test performed on the RC section at depths of 20mm and 40 mm cover, 

and Destructive test on cubes 

Ѵ fRC D Ѵ fRC D Ѵ fRC D 

3.44 27.28 F 3.59 26.02 F 3.58 24.76 F 

3.44 27.57 F 3.59 23.07 F 3.28 23.50 T 

3.44 27.82 F 3.59 23.07 F 3.30 23.54 T 

3.44 27.83 F 3.60 24.11 F 3.31 23.55 T 

3.44 27.86 F 3.60 24.13 F 3.31 23.55 T 

3.45 27.86 F 3.60 23.20 F 3.33 23.58 F 

3.45 28.09 F 3.60 23.24 F 3.34 23.60 F 

3.46 28.23 F 3.61 23.25 F 3.34 23.62 F 

3.46 23.21 F 3.61 23.26 F 3.36 23.74 F 

3.46 23.58 F 3.61 23.36 F 3.36 23.80 F 

3.48 23.70 F 3.61 23.37 F 3.37 23.87 F 

3.51 23.73 F 3.62 23.38 F 3.37 23.93 F 

https://doi.org/10.4314/njt.2025.5155
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3.51 24.26 F 3.62 23.45 F 3.37 24.01 F 

3.35 24.56 F 3.62 23.45 F 3.37 24.02 F 

3.24 24.59 F 3.62 23.10 F 3.37 24.05 F 

3.24 24.79 F 3.64 23.14 F 3.17 25.87 T 

3.25 24.80 F 3.64 25.48 F 3.18 25.93 T 

3.25 24.82 F 3.66 24.77 F 3.18 25.98 T 

3.25 25.00 F 3.66 24.78 F 3.18 26.02 T 

3.25 25.18 F 3.66 24.81 F 3.18 26.02 T 

: : : : : : : : : 

: : : : : : : : : 

5.21 37.430 F 5.52 39.063 F 3.778 39.17 T 

3.66 37.455 T 5.52 39.068 F 3.780 39.21 T 

5.23 37.471 F 5.52 39.089 F 3.784 39.32 T 

3.98 37.475 T 5.81 32.74 F 3.789 39.32 T 

 

 

 

 
Figure 2(c): Ѵ test performed on RC beam at the 

location of the bar 

 

 
Figure 2(d): Destructive Test on companion Cube 
 

 

Table 8: Descriptive range of data for ANN training and testing 

Variable Mean Median Mode SD Range Min Max 

RS 36.12 35 35 7.76 33 22 55 

Ѵ(km/sec) 4.16 3.80 3.53 0.87 2.89 3.10 6 

fRC (MPa) 30.57 29.23 25.48 5.98 17.98 22 39.95 

 

The descriptive data statistics analysis presented in 

Table 8 was performed using the MS Excel program;  

its pattern was examined, and correlation quantile 

density contours were plotted [28]. 

 

3.2  Correlation Matrix  

Table 9 shows the data of the correlation matrix 

between variables. The correlation matrix data helps 

us determine whether linear regression is suitable for 

deriving the relationships, or advanced machine 

learning techniques must be applied to achieve non-

linear correlations. The correlation results reveal a 

strong relationship between rebound number and 

compressive strength (R2 = 0.773), indicating that 

higher Rs values generally correspond to higher 

strength. In contrast, ultrasonic pulse velocity exhibits 

negligible correlation with both Rs  (R2 = -0.07128) 

and f (R2 = -0.02793), indicating minimal linear 

association. 
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 Table 9: Correlation matrix of variables 

Variables Rs F Ѵ 

Rs 1   

f 0.773063 1  

Ѵ -0.07128 -0.02793 1 

 

 3.3 Quantile Density Contours 

The quantile density contours were plotted for a 

certain range of the data set, and the results were 

explained. 

 

 
Figure 3 (a): Quantile Density Contours  

 

The contour zones illustrate good correlation between 

NDT and compressive strength values. The data 

density with the highest concentration observed Rs 

equal to 30–33 and compressive strength 25–27 MPa. 

Yellow/green areas indicate high clustering; while 

blue/purple regions show lower density resign.  

 

 
Figure 3 (b): Quantile Density Contours 

 

Figure 3(b) Quantile density contour plot showing the 

relationship between Ѵ test and Compressive Strength 

for a certain range of the dataset. The color gradient 

represents data density, with yellow–orange zones 

indicating the highest concentration of data points and 

purple–black zones showing progressively lower 

densities. The densest cluster lies around Ѵ = 3.4–3.6 

km/s and CS = 23–25 MPa, representing the strongest 

correlation zone. The spread of contours towards 

higher UPV (up to ~ 4.0 km/s) and CS (~30 MPa) 

reflects data variability caused by the influence of 

reinforcement and material heterogeneity. This 

visualization confirms that Ѵ is a reliable indicator of 

CS within certain ranges, while corrections are 

required for reinforced sections. 

 

3.4  Statistical  Model Development: 

Classification Techniques  

The target variable fRC is continuous; however, it is 

important to note that classification techniques were 

applied to the RS and Ѵ values to categorize them into 

discrete levels or classes as part of the analysis.  

The data shown in Table 7(a) and Table 7(b) were 

separately inserted into the classification learner 

application [26]. To assess the model's performance 

and generalization ability, 5-fold cross-validation was 

used. In the study, the dataset was divided into 70% 

for training, 15% for validation, and 15% for testing. 

Additionally, we employed 5-fold cross-validation to 

ensure robustness and to enhance the generalizability 

of the machine learning models. This process divides 

the dataset into five subsets, training the model on four 

and validating it on the fifth in a rotating fashion. Once 

the data is loaded, users can split it into training and 

validation sets and perform cross-validation to prevent 

over-fitting. 

 

4.0 RESULTS AND DISCUSSION  

After training, the Classification Learner app displays 

key performance metrics, including accuracy, 

precision, recall, and F1-score. The best-performing 

model can be exported as a MATLAB function or a 

trained model structure for further use in scripting and 

deployment.  

Confusion matrices were determined for both models.  

From Table 10, it is observed that the SVM model 

achieved the highest validation accuracy of 99.35% 

for RS data, Figure 4 demonstrate that the classifier 

achieved for class ‘T’ 99.7% positive predictive value 

(PPV) and 100%  true positive rate (TPR) with only a 

negligible 0.3% false discovery rate (FDR). Such 

minimal error is consistent with experimental noise or 

local heterogeneities in concrete (presence of 

reinforcement). Similarly Figure 5, decision tress 

outperformed with an accuracy of 99.45% for Ѵ data.  

Class ‘T’ achieved a 95.5% TPR and 92.8% PPV, with 

only a 1.9% misclassification rate into class F. The 

false discovery rate for class T was 7.2%, slightly 

higher than for the other categories, suggesting some 

overlap in model prediction between F and T values. 
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These small errors were occurred due to 

microstructural variation, reinforcement interference 

or signal scattering near cracks or voids.  

 

Table 10: Percentage Accuracy of validation obtained 

for all models in the classification learner application 

Model 

Number 

Model Type Status Accuracy 

(%)  

1 

 

 

"Decision 

Tree (DT)" 

(Ѵ) 

"Trained" 99.45 

2.2 "Efficient 

Linear 

SVM" (RS) 

"Trained" 99.35  

 

 
 Figure 4: Confusion Matrix from MATLAB 2023b for a successfully SVM-trained model 

 

 

 
Figure 5:  Confusion Matrix from a Successfully DT-trained model using Ѵ-fRC Data 

 

4.1  Svm-Based Equation For Predicting The 

Compressive Strength of Rc from Rebound 

Number 

The RC data set is imported into the classification 

learner application, where RS and fRC are the predictor 

variables, and data is the categorical response variable 

with two possible classes: 'T' and 'F'.  
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Figure 6:  Decision boundary using SVM 

classifier, MATLAB 

 

The decision regions are then plotted using the contour 

function over a scatter plot of the original data, 

highlighting the separation between different classes. 

Additionally, the script extracts the decision boundary 

equations (Figure 6) for each binary classifier by 

retrieving the weight vector (wT) and bias (b) from the 

trained SVM learners [29], providing analytical 

insight into the classification rules. 

 

Figure 7 explains the SVM decision boundary plot 

between Rebound Number and Compressive Strength. 

The yellow line represents the linear boundary 

separating true (green squares) and false (blue 

diamonds) rebound values. Data to the right of the 

boundary are classified as true readings, while those 

on the left are false, indicating the influence of 

reinforcement. This separation enhances the reliability 

of compressive strength prediction for RC using 

rebound hammer data. 

 

Once data is trained, a linear SVM provides a decision 

boundary equation in the form: 

 

𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 = 0                                                  (1) 

 

The decision boundary effectively refines the RS data, 

and with the help of equation (1), the equation of true 

fRC using  Rs data is determined, and the final result is 

given by Equation (3). 

 

𝑤1 = 1.587, 𝑤2 = −1.00009 ; b = -23 obtained from 

MATLAB 2023b Simulink, put these values in 

equation (2)  

 

𝑓𝑆𝑅𝐶 = −
𝐵𝑒𝑡𝑎 𝑣𝑎𝑙𝑢𝑒 1

𝐵𝑒𝑡𝑎 𝑣𝑎𝑙𝑢𝑒2
 𝑅𝑆 −

𝑏𝑖𝑎𝑠

𝐵𝑒𝑡𝑎 𝑣𝑎𝑙𝑢𝑒2
       (2)    

 

𝑓𝑆𝑅𝐶 = 1.587𝑅𝑆 − 23                                              (3) 

 

 

4.2  Decision Tree (DT) Analysis of The 

Relationship Between Compressive Strength 

and Ultrasonic Pulse Velocity (UPV) 

In this study, a DT classifier [29] was developed using 

the Classification and Regression Tree (CART) 

algorithm, with the Gini Index employed as the 

splitting criterion. The results demonstrated that the 

DT classifier achieved the highest accuracy in 

predicting Ѵ outcomes across different concrete 

grades (Figure 7). 

 

 
 Figure 7:  Decision boundary plot for Ѵ RC data 

set using DT 

 

4.3  Error Matrices Developed for The 

Classification Model Using Confusion 

Matrices:   

A 3×3 confusion matrix [25, 29] is constructed for the 

models that achieve the highest accuracy, with the true 

class on one axis and the predicted class on the other. 

This matrix is developed for a binary classification 

problem using the Classification Learner application 

in MATLAB. Error matrices [30] are evaluated using 

all the formulae discussed in Table 11. 

 

The ML models achieved high accuracy in predicting 

(fRC). There are no previous studies that have 

reported an ML-based interpretation of combined 

NDT data for this purpose. Therefore, direct 

comparison with published work is not possible; 

instead, our findings establish an initial benchmark 

and are contrasted with related studies using NDT 

techniques or conventional statistical correlations, 

which provide higher prediction errors.  

 

 

A key limitation of the present work is that the study 

is based on lab-controlled specimens, which may not 

fully capture field influences such as material 

variability, workmanship, and environmental 

exposure. 
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Figure 8: RC Sample Decision Tree of Ѵ data set 

 

 

Table 11: Performance of Error Matrices using the Confusion Matrix 

Errors Linear SVM 

RC (RS v/s f) 

DT Classifier 

RC(Ѵ v/s f) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   

1 0.978 

𝐹𝐷𝑅 = 1 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1 −  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

0 0.022 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

1 0.995 

𝐹𝑁𝑅 = 1 −  𝑅𝑒𝑐𝑎𝑙𝑙 = 1 −
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

0 0.045 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

  
1 0.98 

 

5.0  CONCLUSIONS 

The obtained NDT dataset using RS test and Ѵ test 

values for RC, when analyzed through a correlation 

matrix, revealed a weak correlation between the data. 

The density contours also supported this observation, 

for a certain range of the dataset. Therefore, it  

 

becomes necessary to segregate or filter the NDT data 

values to determine the correct compressive strength 

of the specimens.  

 

RS tests were conducted on reinforced and 

unreinforced regions of all beams with compressive 

strengths ranging from 25 MPa to 35 MPa. To ensure 

accurate RS measurements, concrete cubes of the same 

grade were cast. The tests yielded corrected RS values 

of ranges between 25-30 for M25 grade concrete, 30-

35 for M30 grade, and 35-41 for M35 grade.  

 

The SVM model effectively established a clear 

decision boundary between rebound number and 

compressive strength CS, enabling accurate 

classification of RC specimens into strength 

categories. The nearly linear separation highlights the 

robustness of SVM in handling nonlinear yet 

separable data, minimizing misclassification and 

improving prediction reliability. Equation (3) 

obtained from the SVM classifier model effectively 

predicts the in-situ strength of RC members for 
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concrete grades M25-M35 using rebound number 

values.  

 

The presence of a steel bar affects the transit time 

between transducers because the Ѵ in steel is higher 

than in concrete. If there is a path through the steel bar 

that allows the wave to reach the receiver more 

quickly, it highlights the influence of the steel bar on 

the measured transit time. The Ѵ in plain concrete is 

generally expected to remain consistent regardless of 

the transducer location along the beam. However, it 

was observed from readings that the average Ѵ tends 

to decrease as the spacing between transducers 

increases, as shown in Figure 2(b).  

To obtain the most accurate Ѵ measurement, resulting 

in a Ѵ of 3.26 Km/s for M25 grade, 3.56 Km/s for 

M30, and 3.95 Km/s for M35. However, the influence 

of the reinforcement bars significantly affected the 

measurements, making the direct interpretation of the 

concrete properties unsuitable without accounting for 

the impact of reinforcement. 

 

By employing MATLAB’s Classification Learner, a 

Decision Tree Classifier was developed that 

successfully segregated V values into true and false 

categories with an overall accuracy of 99%. The 

classification tree effectively analyzed Ѵ values and 

categorized them based on concrete strength grades: 

M25 Grade Concrete: Ѵ ranges from 3.23 km/sec to 

3.8 km/sec. M30 Grade Concrete: Ѵ falls within 4.0 

km/sec to 4.5 km/sec. M35 Grade Concrete: Ѵ should 

ideally be less than 4.7 km/sec. 

 

The percentage change in Ѵ observed for specimens 

reinforced with 16mm φ steel bars was 15%, 12% and 

16% for beams M25C20, M30C20, and M35C20, 

respectively, when compared with the plain concrete 

specimen. This variation reflects the combined 

influence of both the higher concrete grade and the 

reinforcement positioned beneath. However, in the RS 

values, no significant change is noted due to the 

reinforcement placed at a depth of 40mm. 

 

Future work could enhance the study by employing 

deep- learning techniques to capture complex patterns, 

expending dataset with measurements from actual 

field conditions, and investigating the influence of 

higher reinforcement ratios using hybrid NDT 

techniques.   
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