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ABSTRACT 

In this paper, the differential equations of Mindlin plates are derived from basic principles by simultaneous satisfaction of 

the differential equations of equilibrium, the stress-strain laws and the strain-displacement relations for isotropic, 

homogenous linear elastic materials. Equilibrium method was adopted in the derivation. The Mindlin plate equation was 

obtained as a system of simultaneous partial differential equations in terms of three displacement variables (parameters) 

namely  (       )   (   )      (   )   where w(x, y, z) is the transverse displacement   and     are rotations of 

the middle surface. It was shown that when      
  

  
      

  

  
          where k is the shear correction factor, 

the Mindlin plate equations reduce to the classical Kirchhoff plate equation which is a biharmonic equation in terms of 

w(x, y, z = 0). 

 

Keywords: Mindlin plate, Kirchhoff plate, tranverse displacement, rotations, shear correction factor, biharmonic 

equation. 

 

1. INTRODUCTION/LITERATURE REVIEW 

Plates are three dimensional structural members 

frequently used as fluid containers (circular, elliptical 

and rectangular plates), building and bridge decks 

(rectangular and skewed slabs), aircraft wing panels 

(skewed plates), retaining walls, aerospace panels, and 

machine components [1 – 4]. Plates can be subjected to 

in plane loads and transverse loads, and can be simply 

supported, clamped or free at the edges. 

The plate problem belongs to elasticity theory, and is 

usually to find the distribution of stress fields, strain 

fields and displacement fields in a given plate under 

known loading and support conditions. The exact 

solution is governed by a system of fifteen partial 

differential equations of equilibrium, material 

constitutive laws and kinematic equations that are 

solved subject to the loading conditions and the 

boundary conditions [5-8]. 

The basic idea of most plate theories is to reduce the 

three dimensional problem of plates to two dimensional 

problems. This reduction of dimension is accomplished 

by integrating out one of the dimensions, usually the 

plate’s thickness  z; and thus expressing internal stresses 

using internal stress resultants, Mxx, MxyMyy, Qx, and Qy. 

All plate theories assume a kinematic assumption that 

the strains can be expanded in the smallest dimension [9, 

8, 10]. Accordingly several theories had been formulated 

to describe the plate problems. Some of these plate 

theories are Kirchhoff plate theory [3], Mindlin plate 

theory [4], Reissner plate theory [11, 12], Reddy plate 

theory[8], Levinson plate theory [13]. 

In this paper, the Mindlin plate theory for isotropic plates 

is formulated and derived using the equilibrium method, 

and presented as a problem of the theory of elasticity. 

 

2. RESEARCH AIMS AND OBJECTIVES 

The general aim and objective of this study is to derive 

the Mindlin plate theory from fundamental principles 

using the equilibrium approach. The specific aims and 

objectives are 

(i) to derive the governing equations of the Mindlin 

plate theory from fundamental principles of 

elasticity theory, using the equilibrium approach 

(ii) to show the relationship between the Mindlin plate 

theory and the Kirchhoff-Love plate theory. 

 

 

3. DERIVATION OF MINDLIN PLATE EQUATIONS 

The fundamental assumptions are as follows: [3, 4, 8, 14] 

(i) the state of deformation is described by the 

transverse displacement in the z-direction of the 

middle surface w(x, y, z = 0) and the rotations 

  an    of the middle surface, where    an     are 

rotations about the x and y axes of lines normal to 

the middle surface before deformation [4]. 
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(ii) plane cross-sections originally perpendicular to the 

middle plane of the plate remain plane, but not 

necessarily orthogonal to the middle surface. Hence 

according to [14],              . 

(iii) the middle surface remains neutral during bending, 

and is the neutral surface 

(iv) the displacement components vary linearly across 

the thickness 

(v) the plate material is isotropic, homogeneous and 

linear elastic 

 Let the displacement field be given by 

 (     )     (   )                        ( ) 

 (     )     (   )                        ( ) 

 (     )   (   )                          ( ) 

In (1) to (3), u, v, w  are displacement components in the 

x, y, z coordinate directions; and   an    are rotations 

about the x and y axis of lines normal to the middle 

surface before deformation. The kinematic (strain-

displacement) equations for finite strain (small-

displacement) elasticity problems are thus Equations (4) 

– (9): 
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                                               ( ) 
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                                       ( ) 
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Where              
are normal strains and             are 

shear strains. Substitution of Equations (1) – (3) into (4) 

– (9) gives: 
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Plate problems are required to satisfy the stress stain 

laws, and for two dimensional plane stress problems, we 

have 
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Here         are normal stresses,    is the shear stress. 

These stress-stain laws are expressed in terms of the 

displacement components by substituting Equations 

(10) – (15) into Equations (16) – (21) to obtain 

Equations (22) – (26). 
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We wish to eliminate the thickness variable z from the 

equations, by expressing the internal stresses 

                   in terms of stress resultants or forces 

defined as Mxx, Myy, Mxy, Qx and Qy where Mxx, Myy are 

bending moments, Mxy, is the twisting moment and Qx 

and Qy are shear forces. 

From statics, the internal stress resultants are obtained 

as: 

    ∫  
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where 
 

 
   

 

 
 and h is the plate thickness. 

Using Equations (22) – (26), the internal stress 

resultants become 
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where k  is the shear correction factor 

From the differential equations of equilibrium of an 

infinitesimal plate element, 
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Substitution of Equations (32) - (37) into Equations (38) 

- (40), we obtain: 
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Simplification yields: 
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Equations (39) - (40) could be combined to obtain one 

partial differential equation of equilibrium as follows: 
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The substitution of Equations (33) – (35) in Equation 

(47) would yield 
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Simplification yields: 
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where   is the Laplacian operator. 

The governing equation of isotropic homogeneous 

Mindlin plates are thus obtained as a system of 

differential equations in terms of three unknown 

displacement parameters w,         . They are 

Equations (44), (45), (46) and (49). 

 

4. RELATIONSHIP BETWEEN THE MINDLIN PLATE 

THEORY AND THE CLASSICAL KIRCHHOFF PLATE 

THEORY 

In the classical Kirchhoff plate theory, the shear strains 

           are disregarded; and assumed to be equal to 

zero, respectively. Then Equations (14) and (15) would 

yield 
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Hence, 

    
  

  
                                          (  ) 

    
  

  
                                          (  ) 

The internal bending moment resultants Equations (33) 

- (35) would then become for the Kirchhoff plate theory: 
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The shear force resultants are 

                                  (  ) 
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                                  (  ) 

The equation of equilibrium of Mindlin plate when shear 

strains are disregarded becomes: 
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where 
2  is the Laplacian operator while           is 

the biharmonic operator. 

Equation (61) is the governing partial differential 

equation of equilibrium for Kirchhoff plates. The Mindlin 

plate governing equation thus reduces to the classical 

Kirchhoff plate equation when.    
  

   
 an      

  

   
   

 

5. DISCUSSIONS AND CONCLUSIONS 

The Mindlin plate theory has been derived for isotropic, 

homogeneous linear elastic plates using the equilibrium 

method, taking into consideration the shear strain, and 

hence the shear stress across the plate thickness. 

However, the shear strain is assumed to be constant 

across the plate thickness, violating the predictions of the 

theory of elasticity since the shear stress is known to 

vary parabolically over the plate thickness. A shear 

correction factor k, is introduced to ensure that the 

correct amount of internal energy is predicted by the 

Mindlin plate theory. The shear correction factor merely 

yields a resultant shear stress that agrees with the 

predications of elasticity theory, but the distribution of 

shear stress and shear strain violate the theory of 

elasticity solutions. The transverse shear stresses are 

found to be constant over the plate thickness, 

contradicting the shear free boundary condition on the 

plate surfaces. 

The differential equations for Mindlin plates have been 

derived in this paper from fundamental principles using 

the equilibrium method. The equations were derived 

using the requirements of the differential equations of 

equilibrium for an infinitesimal element of the plate, the 

material constitutive laws, and the strain-displacement 

relations for small-displacement elasticity problems. This 

three sets of relations were assumed to be satisfied 

simultaneously for any differential element of the plate. 

The deformation field was assumed, in line with 

Min lin’s plate to be defined by three displacement 

components, namely the transverse displacement w, and 

the rotations    and    relaxing the orthogonality 

requirements of plane cross sections to the middle 

(neutral) surface, by enforcing                 shear 

strains were accounted for in the derivation, yielding 

stress-strain laws given by Equations (16) – (21). The 

material constitutive laws expressed in terms of the 

three displacement fields were obtained as Equations 

(22) – (26). The internal stress resultants were obtained 

as Equations (33) – (37). Differential equations of 

equilibrium expressed in terms of the internal stress 

resultants were then used to obtain the governing partial 

differential equations of equilibrium of Mindlin plates as 

Equations (44) – (46) and (49). The governing equations 

of Mindlin plates are a system of partial differential 

equations in terms of three unknown displacement 

parameters, namely w, x  and .y  

Mindlin theory is a two dimensional plate theory and 

cannot yield an exact solution to plate problems since 

plate problems are three dimensional. The major merits 

of the Mindlin plate theory are that the theory takes 

consideration of shear effects, and the theory simplifies 

to the classical Kirchhoff plate theory by setting    

 
  

  
      

  

  
           The shear correction factor 

introduced to account for the non-uniformity of the shear 

strain on the cross-section is dependent on the shape of 

the cross-section, and the shear stress distribution. 

Reissner suggests that k=5/6. 
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